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Abstract

We examine the extent to which environmental regulation affects innovation and which pol-

icy types provide the strongest incentives to innovate. Using a local projection framework,

we estimate the regulatory impact on patenting activity over a five-year horizon. As a proxy

for environmental policy exposure, we estimate firm-level greenhouse gas emissions using a

machine learning algorithm. At the country-level, policy tightening is largely associated with

no statistically significant change in environmental technology innovation. At the firm-level,

however, environmental policy tightening leads to higher innovation activity in technologies

mitigating climate change, while the effect on innovation in other technologies is muted.

This suggests that environmental regulation does not lead to a crowding-out of non-clean

innovations. The policy type matters, as increasing the stringency of technology support

policies and non-market based policies leads to increases in clean technology patenting, while

we do not find a statistically significant impact of market-based policies.

Keywords: Environmental regulation, Innovation, Emissions, Porter hypothesis, Euro Area

JEL Codes: O44, Q52, Q58
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Non-technical summary

Concerns about the impacts of climate change have led to a progressive tightening of envi-

ronmental regulation at the EU level as well as nationally. This trend is likely to continue

going forward as governments gradually translate their climate neutrality targets into legis-

lation. Policy-makers have a broad range of tools at their disposal, including carbon taxes,

performance standards and research and development (R&D) subsidies for environmentally

friendly technologies. All these regulatory instruments are intended to reshape the economy

by incentivising or mandating changes in firms’ behaviour. While these policies often achieve

their primary goal and reduce pollution, they also impose limits on the way firms can operate,

which can increase costs, at least temporarily, due to necessary adjustments. The inevitabil-

ity of a trade-off between sustainability and competitiveness has been, however, questioned by

Porter and Van der Linde (1995), who argued that under certain conditions more stringent

environmental regulations could increase innovation and consequently the competitiveness of

firms. Through this mechanism, the short-term adjustment costs could be compensated or even

exceeded by benefits. While this proposition, known as the Porter hypothesis, is theoretically

attractive, it needs to be empirically tested on a representative sample of firms to inform reliable

policy recommendations.

This paper tests the Porter hypothesis at the country and also at the firm level. We use

country-level data from 15 euro area states and firm-level information for more than three mil-

lion companies from six euro area countries over the period 2003 to 2019. We combine this

information with the OECD Environmental Policy Stringency (EPS) indicator that allows us to

compare the stringency of different types of environmental policies across countries and time. In

addition, we estimate the greenhouse gas emissions of firms using a machine learning algorithm

(XGBoost), to overcome the paucity of such information in available datasets, allowing us to

distinguish between low and high polluters within this large sample of firms. This distinction is

key to our empirical strategy as highly polluting firms can be expected to be more exposed to

environmental regulations and, therefore, face higher costs. We estimate the impact of changes

in environmental policies on innovation using a local projection approach, which allows us to

examine the impact over different horizons (up to five years ahead), while still controlling for

many other factors driving innovation. Furthermore, we explore whether the impacts of different

policy types differ and investigate whether there are differences in firms’ responses depending

on their characteristics.
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At the country level, we largely observe no significant impact of environmental policy tighten-

ing on clean innovation (captured by patent filing), with the exception of technology support

policies, where we observe a minor decline three years after the policy shock. Firm or sec-

toral differences could, however, obscure the regulatory impact in this setting. Our firm-level

analysis reveals that highly polluting firms that are more exposed to environmental regulation

tend to patent more in clean technology classes, while patenting in other technology classes

remains largely unchanged. The only exception are green subsidies, which appear to have a

spillover effect on innovation in non-clean technology classes. Non-market based policies such

as standards and technology support policies such as R&D subsidies and feed-in tariffs have

a relatively more pronounced effect on clean technology patenting compared market-based in-

struments (e.g. taxes or cap-and-trade policies), with the magnitude of the impact at its peak

three years after the policy shock. In related work (Benatti et al., 2023), we examine the effect

of environmental policy tightening on productivity growth and largely find negative effects for

high-polluting firms in the five years after the policy shock. It is possible, however, that the

positive impact on certain types of innovation translates into productivity gains only beyond

the 5-year horizon, which we were able to empirically examine.

The current study suggests that decisive environmental policy action is essential for increasing

clean technology innovation, which in turn is vital for delivering greenhouse gas reductions at a

lower cost in the future. The combined results from this study and Benatti et al. (2023) suggest

that technology support measures possibly offer a ’no regret’ policy pathway, which incentivises

clean technology innovation, while limiting possible short-term productivity losses.
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1 Introduction

The EU climate-neutrality target by 2050 sets a clear direction for the future and calls for a

wide-ranging transformation of the economy. In addition to the EU Emissions Trading Scheme

(ETS), the flagship policy for greenhouse gas emission abatement at the EU level, a growing

number of EU governments are establishing their own ’net-zero’ targets (Rogelj et al., 2021) and

adopting increasingly stringent policies to deliver on their climate and broader sustainability

ambitions at the national level. The implemented policies run the entire gamut of command-

and-control instruments (such as mandatory standards), market-based tools (such as carbon

pricing and auctions) and technology support measures (such as R&D subsidies and renewable

energy feed-in tariffs). Changes in these policies are likely to trigger a substantial re-allocation

of resources between sectors, especially when combined with stimulus packages adopted in the

wake of the COVID-19 crisis, which were also dedicated to supporting ‘green’ economic activities

albeit to varying degrees (Aulie et al., 2023). While these regulatory actions may have impor-

tant benefits in terms of mitigating environmental market failures and the physical risks related

to climate change, they could also have unintended economic consequences and, if implemented

sub-optimally, increase transition risk (Stock, 2022). The economic effects of environmental

regulation are therefore of central interest to policy-makers both at the national and EU levels.

Regulation is traditionally seen as a hindrance to economic activity, at least in the short to

medium term, as it raises costs without increasing output and restricts the set of production

technologies and outputs. In contrast to this view, the Porter hypothesis (Porter, 1991; Porter

and Van der Linde, 1995) suggests that, under certain conditions, environmental policies can

spur innovation and by doing so enhance productivity, which can offset or even outweigh the

costs of the regulation. The body of existing empirical evidence evaluating the Porter hypothe-

sis is large but results remain inconclusive, with some studies positing that it holds while others

finding evidence of the opposite. The majority of relevant studies are either focused on single

countries or industries and therefore suffer from limited external validity or are carried out at

the industry or country levels, which obscures the impact of firm heterogeneity. Potential en-

dogeneity issues are also rarely addressed in a robust manner. Moreover, few studies explicitly

examine whether innovation gains in some technology classes may be offset by losses in others.

Since innovation is key to enabling pollution reduction without sacrificing economic growth,

this paper focuses on the impact of environmental regulation on innovation. We contribute

to the literature by probing the link between environmental policy stringency and innovation
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both at the country and the firm levels and explore innovation as a potential channel driving

the observed productivity effects described in Benatti et al. (2024). We use local projections

(Jordà, 2005) to estimate impulse responses of innovation to a shock in environmental regu-

lation. This framework allows us to describe the dynamic effects of changes in regulation at

different time horizons, an aspect that has been overlooked thus far (Ambec et al., 2020). In

addition, we assess the dynamic impact of environmental regulation tightening on countries’

and firms’ innovative output in clean technologies as well as in non-clean technology classes,

enabling us to evaluate possible crowding-out of the latter by the former.

While our country-level analysis does not reveal significant effects of tighter environmental

regulation on the share of green innovation, at the firm level we find that tighter environmen-

tal policies lead to increased innovation efforts in clean technologies. Importantly, technology

support and non-market based policy instruments tend to have a stronger impact on clean inno-

vation than market based policies. These effects occur to be statistically significant with a lag of

two to three years after the policy tightening. At the same time, there is no statistically signifi-

cant impact of stricter regulation on other innovations, with the exception of positive effects of

technology support policies. Thus, we do not observe a crowding out of other technologies due

to more green innovation. We also show that these effects are mainly driven by the intensive

margin, i.e. firms with patenting experience increase their efforts without new firms starting to

patent.

Apart from new insights with respect to the dynamic effects of different types of regulation

on innovation, and the trade-off between clean and non-clean innovation, we also contribute

to the existing literature by leveraging a large new multi-country firm-level data set and by

improving identification with firm specific estimates of regulatory exposure. We gathered data

on more than three million individual firms, combining balance sheet information with patent

data, which allows us to differentiate between ’green’, ’non-green’ and ’dirty’ innovations, and

with estimated firm-specific greenhouse gas emissions. Our identification strategy is based on

the assumption that environmental policy is likely to affect firms heterogeneously depending

on their exposure to regulation, with firm-level emissions used as a proxy for this exposure.

A similar approach has been applied by Albrizio et al. (2017), albeit on an industry- rather

than firm-level, which failed to account for the large within industry heterogeneity of emission

intensities (Lyubich et al., 2018). Scarcity of firm-level emission data, especially for smaller

firms, would normally preclude the deployment of this approach at firm level. We overcame this
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problem by estimating the firms’ position in the emission distribution using a Boosted Trees

machine learning model based on balance sheet data and firm characteristics.

The remainder of the paper is structured as follows: section 2 reviews the literature, section 3

explains the hypothesis that we want to test, section 4 details the data used, section 5 describes

the empirical models used and justifies our claim to causality, section 6 discusses the aggregate

and firm-level results and finally, section 7 concludes.

2 Literature Review

Porter and Van der Linde offered primarily anecdotal case study evidence to support their

hypothesis (Porter, 1991; Porter and Van der Linde, 1995). However, these ideas have since

inspired a large body of empirical literature addressing each of its theoretical offshoots. The

’weak’ Porter hypothesis, which we examine in this paper, holds that optimally designed en-

vironmental regulation can spur innovation. In comparison, the ’strong’ version goes further

to propose that increases in environmental regulation can increase firms’ competitiveness and

improve other business outcomes. The ’narrow’ version, which we also examine, suggests that

flexible, market-based regulation performs better at incentivising certain kinds of innovation

than more prescriptive forms of regulation (Jaffe and Palmer, 1997).

A number of possible sources of endogeneity complicate the identification of a causal link be-

tween regulation and economic outcomes including innovation. Albrizio et al. (2017) in par-

ticular highlight that simultaneity or reverse causality issues may arise if good environmental

performance in certain industries facilitates adoption of more stringent environmental policies

or if poor performers are able to successfully lobby against more stringent policies. We review

the most relevant literature with a particular focus on the identification strategy chosen by the

authors. We also elaborate falsifiable hypotheses based on the ideas of Porter and Van der

Linde (1995) and other literature, both theoretical and empirical.

The studies that test the weak version of the Porter hypothesis largely find a positive relation-

ship between stricter regulation and green innovation, but to varying degrees (Ambec et al.,

2020; Cohen and Tubb, 2018; Kozluk and Zipperer, 2015). This is in contrast to the literature

regarding the strong version of the Porter hypothesis which is even inconclusive regarding the

direction and the significance of the effect. Existing studies vary widely in terms of the environ-

mental policy stringency measure they use, the dependent variable used to capture innovation
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efforts as well as the empirical strategies and underlying data. A seminal paper by Jaffe and

Palmer (1997) uses pollution abatement costs to proxy environmental policy stringency and

R&D expenditures as well as the number of successful patent applications as the dependent

variable. They find a positive link with R&D expenditures but no statistically significant effect

on the number of patents.

An important subset of studies examines the impacts on innovation and/or clean innovation of

specific individual environmental policies. These tend to be able to use difference-in-differences

or regression discontinuity designs and therefore their causal identification is more robust.

This includes, for instance, Calel and Dechezleprêtre (2016), who use a matched difference-

in-differences design to examine the effect of the EU Emission Trading Scheme (EU ETS),

exploiting the inclusion threshold which is defined in terms of the size of an individual installa-

tion. They show that EU ETS increased innovation activity in low-carbon technologies among

participating companies but argue that the effect of the policy on innovation is weak overall.

Howell (2017) offers well-identified insights regarding the impacts of R&D funding, using data

about firms applying for support from the US Small Business Innovation Research (SBIR) pro-

gramme. Dechezleprêtre et al. (2023) use a size-based inclusion threshold to assess the impact

of a UK R&D tax incentive on innovation, relying on a regression discontinuity design. They

find a positive impact of R&D tax credits on innovation but do not specifically examine clean

innovation.

While the studies of specific policies offer valuable insights and offer a more straightforward path

to causal identification of the impact of a specific policy instrument on innovation, the robust

causal claim often comes at the expense of external validity. These studies provide little infor-

mation about the global impact of environmental policy at large and the possible economy-wide

costs and transition risk that it may introduce. Hence, there is also a broad literature with an

aggregate perspective using country or industry data that analyses the effects of environmental

regulation on different measures of innovation (Brunnermeier and Cohen, 2003; Popp, 2006;

Johnstone et al., 2010b, 2012; Eugster, 2021). Lanoie et al. (2011), Rubashkina et al. (2015)

and Mart́ınez-Zarzoso et al. (2019) even test the entire Porter hypothesis chain. However, due

to aggregation, problems in the timing, or no exogenous variation, the causal link between the

policy variables and the innovation outcomes is usually not established in a robust manner.

Our empirical approach tries to combine the best of both appraoches by using aggregate policy
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measures in the multi-country study similar to Aghion et al. (2016), which estimates the impact

of fuel taxes on clean and dirty innovation. Given our aim to study the impact of regulation

also on firms without a patenting history, we opted however for relying on estimated emissions

instead of the history of patent filing as exposure measure. By using granular firm data and

following the identification approach by Rajan and Zingales (1998), we argue for the causality

of the positive effects of (specific) environmental policies on green innovations.

Another key issue is the role of different types of policies and their design attributes. Johnstone

et al. (2010a) find that stability and flexibility have distinct effects on innovation beyond that

of policy stringency, capturing these traits using survey data. Arimura et al. (2007) consider

the differences between technology standards, performance standards, input tax and pollution

taxes in their effect on R&D budgets of manufacturing facilities in 7 OECD countries and find

that the most prescriptive policy, technology standards, have the strongest effect. Popp (2003)

shows that switching from a command-and-control instrument to permit trading to control sul-

phur dioxide emissions, in the wake of the Clean Air Act passage, reduced innovation activity.

More recently Fabrizi et al. (2018) and Eugster (2021) used the disaggregated EPS index to

investigate the impact of different policy types. The former study investigates the joint role

of research networks and environmental stringency as a driver of green patents and finds that

market-based instruments in conjunction with participation in European research networks lead

to increased production of green patents. Eugster (2021) only examines clean energy patents

and carries out his analysis only at the country level but finds a positive relationship between

both non-market and market-based policies and clean innovation. In the absence of a plausible

source of exogenous variation, the effects he finds are, however, not necessarily causal.

Ambec et al. (2020) raise an important point about the lag structure of the relationship between

policy changes and innovation. In their meta-synthesis, they argue that previous studies often

failed to pick up the effect of regulation on innovation due to inappropriate representation of

the innovation cycle in their use of lags. Although Brunnermeier and Cohen (2003) find a posi-

tive relationship between lagged compliance costs and innovation and Lanoie et al. (2008) find

a positive relationship between lagged regulatory stringency and productivity, most previous

studies have relied on contemporaneous comparisons. The choice of an empirical model needs

be informed by the fact that innovations may take several years to develop, and capital expen-

ditures are often delayed for a few years through normal budgetary cycles and building lags.

The local projection framework of Jordà (2005) is well suited to addressing this issue, though
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it has only been deployed in two recent IMF working papers by Eugster (2021) and Bettarelli

et al. (2023). None of these two perform their analysis at the firm level and merely focus on

innovation within the energy sector.

3 Hypotheses

The Porter hypothesis as it is originally stated merely posits that regulation, if well-designed,

may incentivise innovation and lead to competitiveness gains that more than offset the cost of

the regulation and not that is certainly will. It is therefore, in itself, not falsifiable. In this sec-

tion, we explicitly state falsifiable hypotheses we are testing, inspired by the Porter Hypothesis

and other follow-on contributions to the literature.

Hypothesis 1: Environmental regulation will incentivise clean technology innovation.

According to Porter and Van der Linde (1995) regulation may “trigger innovation [broadly

defined] that may partially or more than fully offset the costs of complying with them”. The

intuitive notion that regulation, which changes the relative costs of factors of production rel-

ative to others, may induce innovation to reduce the use of those factors that have become

relatively more expensive, dates back to Hicks (1963). But what are the forces that go against

the weak version of the Porter hypothesis? Gans (2012) highlights the fact that environmental

policy may, at least in the short to medium term, reduce output, which in turn would reduce

the incentive to invest in innovation. Innovation in clean technologies faces additional hurdles

compared to innovation in other technology classes. In an equilibrium, innovators will invest

where the returns to innovative capital are the highest, however, the economics literature on

innovation underlines that innovation is path dependent, meaning that companies tend to inno-

vate in the technological areas in which they already have a substantial knowledge stock Aghion

et al. (2016). As Calel and Dechezleprêtre (2016) highlight, based on empirical work, innova-

tion in green technologies is far from the only possible response to environmental regulation.

For instance, the Acid Rain program in the US, which regulates sulphur emissions from indus-

trial plants, has been extensively studied and the results suggest nearly half of the emissions

reductions were achieved by installing scrubber technology and the remainder by switching to

coal with a lower sulfur content (Joskow et al., 1998). Moreover, Martin and Verhoeven (2022)

recently found that the private value of clean innovations is more dispersed, thereby making

investment into clean technology innovation more risky. Under financial constraints, therefore,
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firms may be less likely to invest into clean technologies, relative to dirty.

Hypothesis 2: Market-based policy instruments are more effective in incentivising clean in-

novation.

The general equilibrium model of Gans (2012) underscores that tightening climate regulation

may not have an equal effect on all environmentally friendly technologies and that policy de-

sign is of key importance. Dechezleprêtre and Sato (2017) highlight that while the theoretical

literature mostly argues that market-based regulation provides a stronger incentive to innovate

compared to command-and-control (e.g. Parry et al., 2003), empirical literature mostly appears

to show the opposite (e.g. Popp, 2003). Given that market-based instruments often leave more

flexibility with respect to how pollution reductions are attained, it is possible that at a certain

fixed level of stringency, these instruments yield better innovation performance as these may

give the firm a bigger scope for optimising investment, and therefore would be less likely to

reduce output. On the other hand, giving greater flexibility to firms may be less likely to induce

innovation if firms opt for fuel switching, which may be a lower-risk option, or if the policy does

not give enough certainty to make the long-term investment in innovation.

Hypothesis 3: Innovation in clean technologies will not crowd-out other types of innovation.

Less attention has been paid in the literature to the question of whether clean technology in-

novations, induced by environmental regulation, replace other types of innovation or whether

they are additional. This is an important consideration to policy-makers who may typically

be interested in increasing innovation and productivity across the entire economy. Calel and

Dechezleprêtre (2016) find that the EU Emissions Trading Scheme increased innovation overall

in firms covered by the regulation and find no evidence of substitution. Popp and Newell (2012)

on the other hand find, that alternative energy patenting has crowded out other types of patent-

ing at the firm level. In a similar vein, the results of Aghion et al. (2016) show that ’clean’ car

innovations replace ’dirty’ can innovations (i.e. those related to the combustion engine) at the

firm level in response to fuel price increases.
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4 Data

Our analysis combines a variety of data sources to describe the effects of changes in environmen-

tal regulation on innovation. These include aggregate indicators from the OECD to describe

macroeconomic changes and environmental policies as well as granular firm and emission data

from ORBIS, iBACH and Urgentem. Urgentem is a source of firm-level emission data, which

is key to our identification strategy, however, its coverage remains small. We therefore used a

machine learning algorithm to generate synthetic data where emissions were not reported on

the basis of balance sheet data, as described in more detail below. Our innovation data comes

from the Orbis Intellectual Property databse. Our data set spans the period from 2003 to 2019

and includes 15 EA countries for the aggregate analysis and firms from six EA countries for

our firm-level analysis. The resulting data set covers three million firms with multiple years of

information each, resulting in more than 22 million firm-year observations from the covered six

EA countries. This represents about one-quarter of all firms with employees operating in the

analysed sectors.1

4.1 Environmental policy stringency

In order to capture the development of environmental regulation, we use the index of environ-

mental policy stringency (EPS) developed by the OECD (Botta and Koźluk, 2014), which has

undergone a substantial update in 2022 (Kruse et al., 2022). The current version of the EPS

index covers 34 OECD countries over the period 1990–2020 and summarises environmental pol-

icy stringency across selected regulatory instrument categories. The indicator consists of three

components: a market-based, a non-market based and a technology support sub-indicator. The

market-based component groups instruments which assign an explicit price to environmental

externalities (taxes: CO2, SOX, NOX, and diesel fuel; trading schemes: CO2, renewable energy

certificates and energy efficiency certificates). The non-market component clusters performance

standards (emission limit values for SOX, NOX and PM, limits on sulfur content in diesel).

Finally, technology-support policies capture green R&D subsidies (per GDP) and adoption sup-

port measures like feed-in-tariffs. All indicators range from 0 to 6, with 6 being associated with

the most stringent environmental policies and 0 with the least.2 Figure 1 provides an overview

of the evolution of the EPS index as well as the three sub-indices in the countries relevant

1Austria, Belgium*, Estonia, Finland, France*, Germany*, Greece, Ireland, Italy*, Luxembourg, the Nether-
lands, Portugal*, Slovakia, Slovenia and Spain* - * indicates availability of firm-level data

2Stringent environmental policies imply high taxes, low emission limits and high subsidies, all with the aim
to reduce emissions.
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for the firm-level analysis. While we observe a trend towards more stringent policies, there is

substantial heterogeneity across countries and sub-indicators. While previous studies used this

index in their analysis (Albrizio et al., 2017; Fabrizi et al., 2018), the present study is the first

to be able to leverage this measure after the major update.

Figure 1: EPS index
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The objective behind the EPS index is to proxy for the exposure of the entire economy to

environmental regulation, although environmental regulations are often sector specific. Botta

and Koźluk (2014) focus on regulations of the energy and transport sector curbing greenhouse

gas emissions and air pollution. These two sectors are important in all countries, tend to be

characterised by high pollution intensity and tend to be regulated over an extended time period.

By capturing regulations of upstream activities that impact other sectors indirectly, Botta and

Koźluk (2014) argue that policy stringency measured by the EPS index is a reliable proxy for

the overall aim to reduce negative emission externalities. Comparing the EPS indicator to other

environmental policy stringency indices, like the economy-wide stringency indicator of World

Economic Forums Executive Opinion Survey, supports this argument.
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Similarly to Albrizio et al. (2017) and De Santis et al. (2021), our study uses the change in

the EPS indicator rather than the level. The reason is that new investments into abatement

technology are more likely to be spurred by a substantial change in regulatory stringency. When

focusing solely on a single country, the presence of a fixed level of environmental regulations, in

terms of the difference in relative prices of inputs, will not by itself motivate firms to alter their

production methods. Furthermore, EPS (sub-indicator) levels are partly non-stationary, while

first differences are stationary, thus facilitating empirical analysis. Since the Porter hypothesis

concerns the effects of more stringent policies, we specifically focus on positive changes of the

indicator to remove potential asymmetric effects of policy softening. In particular, we consider

the annual changes of the overall index and its sub-indicators and replace all negative changes

with zero.3

As a robustness exercise, we use a binary variable as our treatment which takes the value one if

the increase in stringency is among the largest 25% of changes within a country (we henceforth

refer to this specification as ’large regulatory change’). Thereby, we remove all negative and

small changes and focus on the salient regulatory changes where reactions by firms are expected

to be more pronounced. Figure 2 shows the number and temporal distribution of these large

reform shocks for each sub-indicator in each of the six countries in our data set.4 We also test for

serial correlation of the positive and large changes in the EPS indicators using the bias-corrected

Born and Breitung (2016) Q(p)-test. We find no serial dependency, except for positive changes

in the technology support sub-indicator, which might stem from the serial correlation of GDP

used as denominator to R&D subsidies. Hence, we argue that the changes in EPS indicators

can be interpreted as independent shocks.

4.2 Firm-level data

We are using the Bureau Van Dijk’s ORBIS and the European Committee of Central Balance

Sheet Data Offices’ BACH (Bank for the Accounts of Companies Harmonised) data sets, which

report balance sheet and profit-and-loss data for both listed and unlisted companies (BACH,

2015). A well-known concern regarding these firm-level datasets is the lack of representative-

3Less than a fifth of the changes are negative (24% market, 0% non-market, 19% tech support) and these are
spread across all countries.

4At EU level (affecting all six countries), major market policy reforms are the introduction of the ETS
(2005) and large changes in certificate prices (2006, 2018). An EU-wide non-market regulation to limit sulphur
came into place in 2009. Country specific reforms are, among others, higher solar energy subsidies in Germany
(2004), Portugal, Italy (2005) and France (2006-2012), NOx and PM emission limit reductions in Portugal (2003),
Belgium, Spain and France (2004) or the introduction of CO2 taxes in Spain and France (2014).
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Figure 2: Large EPS changes

0

2

4

6

In
de

x

200
3

200
5

200
7

200
9

201
1

201
3

201
5

201
7

201
9

Year

Germany

0

2

4

6

In
de

x

200
3

200
5

200
7

200
9

201
1

201
3

201
5

201
7

201
9

Year

France

0

2

4

6

In
de

x

200
3

200
5

200
7

200
9

201
1

201
3

201
5

201
7

201
9

Year

Italy

0

2

4

6

In
de

x

200
3

200
5

200
7

200
9

201
1

201
3

201
5

201
7

201
9

Year

Portugal

0

2

4

6
In

de
x

200
3

200
5

200
7

200
9

201
1

201
3

201
5

201
7

201
9

Year

Belgium

0

2

4

6

In
de

x

200
3

200
5

200
7

200
9

201
1

201
3

201
5

201
7

201
9

Year

Spain

EPS (EPS) EPS market-based (EPSM) EPS non-market based (EPSNM) EPS technology support (EPST)
EPS large reform EPSM large reform EPSNM large reform EPST large reform

Note: Occurrences of large changes in the EPS sub-indicators in the six countries used in the firm-level analysis.
A change is considered large if it is among the top 25% of the country’s EPS change distribution.

ness for some sectors and countries. In order to counter some of these issues, we use historical

vintages of ORBIS and organise the data to improve the representativeness and reduce the

sampling bias, as explained in Kalemli-Ozcan et al. (2015).5 Additionally, for the five countries

where iBACH data is available - France, Spain, Italy, Portugal and Belgium - the ORBIS and

iBACH data sets are merged to improve coverage. Whenever a duplicate firm is observed, we

keep the one from ORBIS. Data for Germany is retrieved only from ORBIS. We do not weight

the data as the number of firms per country-sector-size-year cell is only available from 2009

onwards in the structural business statistics from Eurostat and Bajgar et al. (2020) report that

weighting does not solve potential representativeness issues. By restricting the sample to the

best-covered European countries, imputing value added and focusing on firms above 10 employ-

ees the Orbis data are broadly representative (Bajgar et al., 2020). By including iBACH data,

we improve the coverage of small firms.

For the construction of our data set, we closely follow Kalemli-Ozcan et al. (2015) and Gopinath

et al. (2017) and pursue a standard cleaning procedure. In particular, we keep only unconsol-

5Kalemli-Ozcan et al. (2015) argue that following their guidelines, there is no need to re-weigh the data to
obtain nationally representative firm-level data sets.
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idated accounts and remove sole proprietorships.6 We restrict our analysis to non-financial

and non-governmental sectors, and remove firms in the mining, energy and real estate sectors

(NACE Rev. 2 codes C to N except D, K and L). In addition, we remove firm-year observations

with less than one employee, negative value added and inconsistent balance sheet or income

statement relations, including those with negative asset holdings. Furthermore, we keep only

firms with at least two consecutive years of reporting to be able to create growth rates. Finally,

all balance sheet variables are trimmed at the 1st and 99th percentiles to limit the influence of

outliers. Summary statistics for the most relevant variables are shown in Table A1.

4.3 Patent data

Patent data are a widely used to measure innovation efforts within firms. Alongside with the

number of new products, patents are an output-based measure as opposed to R&D spending,

which gauges input into the innovation process. Albino et al. (2014) showed, however, that the

two tend to be closely correlated. The pros and cons of using patents as a proxy for innovation

are widely discussed in the literature (e.g. Calel and Dechezleprêtre, 2016; Eugster, 2021). Im-

portantly, they are known to be strongly linked to economically important innovations (Dernis

and Khan, 2004; Trajtenberg, 1990). The main benefit, in the context of this study, is that

the detailed technological taxonomy in which patent documents are classified, the International

Patent Classification (IPC) scheme and the Cooperative Patent Classification (CPC) scheme

that extends it, allow us to distinguish between innovations on the basis of their climate change

mitigation characteristics (Aghion et al., 2020) and, contrary to input indicators like R&D in-

vestments are also available for small and medium-sized firms (Aghion et al., 2023).

We use the Orbis Intellectual Property (IP) database to source information about the patenting

activities of the firms within our data set. Similarly to the EPO Worldwide Patent Statistical

Database (PATSTAT), Orbis IP has a comprehensive coverage, containing information about

138 million patents and, crucially, the data can be linked to other firm information within the

Orbis database, allowing us to achieve the highest possible match between the two data sets

and to construct firm-level innovation portfolios for the surveyed period. The database includes

information about the inventor, filing dates, citations, patent families, technological categories,

among other things. We opt for the most parsimonious way of identifying green patents and

take advantage of the so-called ’Y02’ tag developed by the OECD and EPO to identify innova-

6The inclusion of consolidated accounts would combine the financials of subsidiaries across different countries
and industries and thus complicate comparisons across countries and sectors.
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tions that contribute to climate change mitigation. This approach to identifying green patents

is widely considered to be the most reliable (e.g. Aghion et al., 2022). The CPC class sym-

bols of patents considered are shown in Table A3. Other contributions to the clean innovation

literature (e.g. Bolton et al., 2022) seek to differentiate between truly ’clean’ technologies that

contribute to the green transition as opposed to ’brown’ technologies that merely contribute to

efficiency improvements. However, for answering our research questions, a robust definition of

green and non-green, as well as dirty technologies alone was sufficient. It is worth noting that

the CPC class symbol codes that we use largely overlap with those identified in Haščič and

Migotto (2015) and therefore also of Cohen et al. (2020), although our selection is more focused

on climate change mitigation and adaptation.

Following common practice in the innovation literature, we aggregate filed patents to a patent

family level, which groups patents that correspond to a single innovation and assign these to the

year of the earliest patent filing within that patent family. We then aggregate patent families

by firm and year. Figure 3 shows the evolution of clean, dirty and non-clean innovation in the

surveyed period both in terms of innovation (patent family) counts and in terms of shares in the

six countries that are included in our firm-level data set. Each patent has multiple technology

classifications attached to it at the most detailed level, we count any patent family that has a

Y02 class symbol attached to it as a ’green’ innovation. To identify dirty innovation, we use

the list of CPC class symbols elaborated by Dechezleprêtre et al. (2014). A detailed list of all

CPC codes at the sub-group and main class level, both green and dirty, used in the analysis is

included in the appendix.

For the country-level analysis, we rely on the OECD database of patents in environment-related

technologies (OECD, 2023) instead of aggregating our firm-level innovation records to maximise

the size of our sample. This database has more country-year combinations compared to our

firm-level patenting data. When a patent was invented by several inventors from different

countries, the respective fractional contribution of each country is taken into account. This is

done in order to eliminate multiple counting of such patents. The OECD environmnent-related

statistics are constructed with data extracted from the world-wide patent database PATSTAT,

produced by the European Patent Office, and using algorithms developed by the OECD. To

find patents in environment-related technologies, detailed search strategies have been developed

drawing on more than 200,000 classification symbols. While the ’Y02’ scheme is used to a

large degree and is explicitly built on this scheme, this patent dataset encompasses a broader
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spectrum of environmental technologies related to environmental pollution and water scarcity

as well as climate change mitigation. A detailed description of the search algorithms used to

identify environment-related technologies is included in (Haščič and Migotto, 2015), showing

that many ’Y02’ tags are nested within this classification.

Figure 3: Innovation data
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A number of caveats must be noted when interpreting results using patent data. Not all techno-

logical fields are equally likely to patent, and legal regimes differ across countries, so especially

raw counts of patents are not directly comparable. Patents have a skewed value distribution

with many having no industrial application and therefore have limited societal value while oth-

ers are very valuable (Aghion et al., 2023). Many innovations are not patented at all because

they are not legally patentable or because the intellectual property regime within a particular

country favours other types of intellectual property protection such as industrial secrecy. That

is also the reason why only 1.34% of our three million firms reported a patent at least once (we

report results separately for this subset of firms). The authors of the hypothesis themselves

note that innovation is not just technological change and can take various forms, including “a

product’s or service’s design, the segments it serves, how it is produced, how it is marketed and
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how it is supported” (Porter and Van der Linde, 1995, p.98). This would potentially suggest

that our results substantially underestimate the regulatory effect. However, there is no reason to

assume that the clean vs. non-clean technology innovation trade-off (or lack thereof) is affected.

4.4 Emission estimation

One of the novel features of this paper is the estimation of CO2 equivalent emissions for all firm

in our sample using machine learning. Unfortunately, the availability of firms’ emission data is

very limited and biased towards large firms. However, financial and non-financial information

can be used to infer CO2 equivalent emissions. This effectively fills the data gap for firms which

do not report emissions in order to support the analysis. Moreover, this synthetic data set can

be used to monitor the exposures of the markets to polluting firms in an extensive number of

other applications. The algorithm relies on emissions data provided by commercial providers for

a sample of large listed firms, associated with the balance sheet information of those companies.

The relevant quantities can then be predicted for non-reporting firms by applying the observed

statistical relationships between the CO2 equivalents emitted, the sector, the country and their

financial information.

More specifically, we use Urgentem data on Scope 1 and Scope 2 CO2 equivalent emissions7

and link these with ORBIS/iBACH information to produce a sample of 35,000 firms. In order

to simplify potential non-linearities in the relationship between emissions and financial infor-

mation, we opted for creating ten emission quantity classes (bins) based on the distribution in

our sample. Once the model is fitted on the Orbis data set, the meaning of the bins should

be treated as arbitrary categories. This allows us to rely on a wide classification set between

high-polluters and low-polluters which gives us the possibility to test different definitions in the

analysis. It also simplifies the calibration of the model. We use emissions rather than emissions

intensity classes because most regulations and disclosure requirements relate to absolute levels

of emissions and not to intensity. For the estimation of the data generation model we use a

machine learning algorithm called Extreme Gradient Boosting (XGBoost), which is one of the

most successful models used in machine learning in the past years, based on ensembled trees

(Chen and Guestrin, 2016; Rokach, 2016). The model selects the regressors (via lasso algo-

rithm) and finds the best non-linear patterns (tree) to estimate the dependent variable, then it

7The data capture direct emissions due to own production and indirect emissions due to purchased energy.
CO2 equivalents are used to compare and aggregate the emissions from various greenhouse gases: carbon dioxide
(CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PCFs), sulphur
hexafluoride (SF6) and nitrogen trifluoride (NF3).
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averages them.

The confusion matrix below (Figure 4) shows how well XGBoost is able to estimate CO2 emis-

sions based on ORBIS/iBACH data for firms never seen by the model before. Since most

observations in the confusion matrix are at or close to the main diagonal, it shows that actual

and estimated emission bins are closely related and our algorithm performs well. As we only

need to to split firms into high and low polluters for our empirical approach, the estimation

accuracy is sufficient for our purpose. The bar plot in Figure 5 depicts the mean of the absolute

SHAP (SHapley Additive exPlanations) values for each regressor. The SHAP value captures

how much a single regressor affected the prediction of an observation and this is summarised

by taking the average over the sample (Lundberg and Lee, 2017). Employment, turnover, tan-

gible and intangible fixed assets as well as the (4-digit NACE) sector are the most important

variables to determine CO2 emissions of a firm. It is difficult to asses ex-post the accuracy of

classifications done on millions of firms that do not report CO2 but the relationships between

sector, size and emissions follows our expectations.

Figure 4: Confusion matrix

Note: Each row of the matrix represents the instances in an actual class while each column represents the
instances in a predicted class. The matrix shows to which extent the algorithm ”confuses” two classes. A large
accumulation at the main diagonal show the fit of the estimation.

5 Empirical Strategy

Determining the causal impact of a regulatory reforms over time poses various challenges, as

mentioned in the literature review. To summarise, policy reforms create a dependency with

business cycle dynamics and their impact could be heterogeneous reflecting macroeconomic or

firm-specific conditions. Furthermore, policy and innovation changes could be jointly deter-

mined by many, sometimes unobserved, variables. Secondly, as Brunel and Levinson (2020)
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Figure 5: Importance of balance sheet variables - SHAP values

Note: Importance of variables in the machine learning algorithm, measured by the mean of the absolute SHAP
value, starting with the most important and going to the least important.

highlight, there is the problem of simultaneity, since environmental reforms might affect inno-

vation but also the innovative performance of firms can influence the appetite of policy-makers

to implement reforms. Thirdly, in a cross-country analysis we have to deal with different in-

dustrial compositions across countries. Inferences can be incorrect, because even identical laws

have different effects when the average firm faces different environmental costs across countries.

Hence, in this section, we explain how we estimate the regulatory effects and how we deal with

these concerns.

5.1 Identification

Our identification strategy relies on the assumption that environmental policy reforms affect

country and firm innovation growth differently depending on their a priori exposure to the reg-

ulation. A higher amount of CO2 equivalent is expected to be a suitable proxy for the level

of environmental reform exposure. The associated costs and the need for adjustment after a

regulatory change should be higher for polluting countries and firms and hence, the impact of
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environmental policies on innovation is expected to be larger compared to their non-polluting

peers. We test this hypothesis to evaluate the underlying mechanism that explains the intended

direction and excludes reversed causality (from innovation to regulatory changes), after control-

ling for a broad set of control variables and granular fixed effects. This approach was popularised

by Rajan and Zingales (1998) who use financial dependence as the exposure variable to analyse

the role of financial development on growth. Since then it has been used often to analyse the

impact of national policies on industries or firms. Albrizio et al. (2017), for instance, use the

industry-level pollution intensity to analyse the impact of environmental reforms on productiv-

ity.

In our empirical setting this approach implies that the EPS index is interacted with a pollution

intensity indicator for countries in the aggregate analysis, and with emission indicators of indi-

vidual firms in the firm-level analysis. Beside the assumption that different technologies lead

to variations in emissions and hence to different adjustment needs, the identification is based

on the assumption that the exposure variable (emissions) is exogenous to regulatory changes.

Hence, it is crucial for this approach to use pre-determined (lagged) emission indicators that are

unlikely to be affected by current changes in environmental regulation. In addition, we tested

whether an increase in regulatory stringency affects the probability of being a high-polluting

firm and we find no significant impact. Table A4 shows the effects of positive EPS changes on

the emission indicator (logit regression) and the ten emission bins (linear regression). Highly

polluting firms may reduce their emissions, but remain among high-polluters up to five years

after the reform. In a similar vein, most high polluting countries remain in this group over the

whole period, despite the fact that they introduced environmental policies. This supports our

identification approach.

5.2 Local projections

Since we expect that effects of regulatory changes occur with some delay, we apply an econo-

metric approach that allows to capture effects at different horizons. Local projections (LP),

introduced by Jordà (2005), calculate impulse responses directly by estimating regressions at

each period of interest rather than extrapolating into increasingly distant horizons. This tech-

nique is based on sequential regressions of the endogenous variable shifted forward in time onto

its lags. Cette et al. (2020, p.7) describe the method as the “differences between two forecasts

- the first corresponding to a situation with the shock and the second to the same situation
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without this shock.” Compared to vector autoregressions, LP are less prone to misspecifications

(Li et al., 2022) and more flexible regarding the analysis of non-linear and state-dependent

impacts, while still able to deal with endogeneity issues (Bordon et al., 2018). The approach

has been recently widely applied in the study of the economic impacts of structural reforms

(Bordon et al., 2018) and fiscal consolidation measures Jordà and Taylor (2016); Owyang et al.

(2013).

At the country level, the dependent variable in our empirical model is the cumulative difference

in the share of environmentally related innovations, between year h after the reform and the

pre-reform year.8 The main regressor (∆EPSj
i,t) is the positive change in the EPS index or

the positive change in one of its sub-indicators j. We interact the policy index with a dummy

(CO2) indicating if the country or firm was among the top most polluting ones of its peer group

in the year before the reform. By using the change in the EPS index between t − 1 and t, we

limit the problem of simultaneity as it is unlikely that future patent filing changes affect past

regulatory changes. More specifically, the baseline model for our aggregate analysis follows the

specification below:

yi,t+h − yi,t−1 = αh
1,i + αh

2,t + βh
1CO2i,t−1 + βh

2∆EPSj
i,t + βh

3 (∆EPSj
i,t ∗ CO2i,t−1)

+γh1Xi,t + εi,t+h h = 0, 1, ..., 5
(1)

where yi,t+h is percentage of environmentally related technologies of country i in year t (as mea-

sured by the OECD); h represents years after the reform. εi,t+h captures the idiosyncratic error.

X collects all country controls including the cyclical position of the country’s economy, labour

market regulation, startup costs, governmental R&D expenditure and the level of economic

development, following Albrizio et al. (2014) if the variables are available. Table A2 in the Ap-

pendix contains details on the variables. The last four controls are included as first lags (before

the reform) so that they can be interpreted exogenously and not as an outcome of the environ-

mental policy change. The cyclical position of the country measured by the output gap controls

for business cycle dependencies of productivity growth and new regulations. The employment

protection legislation indicator and startup costs approximate supply side policies within the

labour and product markets. Governmental R&D expenditure controls for another potential

omitted variable bias as it influences both firm innovation as well as decisions on green subsidies.

8We have only few zero observations at country level given the size of the countries and dynamics in the
recent years. Hence, no further transformation is necessary.
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We use country fixed effects (αi) to capture the different institutional settings across countries,

as well as other differences that are potentially relevant to innovation activity. In addition,

we include time dummies (αt) to capture developments specific to a year but common to all

countries or firms like the ECB’s monetary policy or the occurrence of the global financial cri-

sis. Regarding the concern of industrial composition differences across countries, we add the

industry share as control variable at the aggregate level and see no changes in the baseline

results. This will not be necessary in our firm-level analysis as it is not subject to the industrial

composition problem by looking at each firms response separately. However, at the country

level, differences in emissions emerge only from between-country differences, which is the same

level of variation as the change in environmental policy stringency. The country-level analysis

is therefore correlative.

The dependent variables in our firm-level model (2) are the cumulative relative changes in the

number of innovations (patent families), between year h after the reform and the pre-reform

year. The definition of innovations and how we aggregate them at the firm-year level is detailed

in the section 4.3. We apply the inverse hyperbolic sine (or arcsinh) transformation to inno-

vation counts9 because it allows us to retain zero-valued observations, which are very common

in our data set, and because, similarly to a log transformation, it reduces the influence of out-

liers in highly skewed distributions.10 A common alternative to this approach when analysing

innovation outcomes is using a specification log(1 + no.ofpatents), used for instance in Aghion

et al. (2023). We also run the analysis with this specification of the dependent variable and

obtained similar results (see Table A7).

arcsinh(yf,t+h)− arcsinh(yf,t−1) = αh
1,t + αh

2,s + αh
3,f + βh

1CO2f,t−1 + βh
2∆EPSj

i,t+

βh
3 (∆EPSj

i,t ∗ CO2f,t−1) + γh1Xi,t + γh2Zf,t + εf,t+h h = 0, 1, ..., 5
(2)

In addition to the macro indicators from the aggregate analysis, we add lagged firm charac-

teristics Z (before the reform) as control variables: age, size, return-on-assets and firm patent

stock in the pre-sample period (1990-2002). Again, details are provided in the appendix. The

specification also includes firm-specific CO2f,t−1 equivalent emissions estimated as decile bin

within the emission distribution. These are interacted with our EPS indicators that capture the

environmental policy stringency. Exposure at the firm or industry level exploits within-country

9arcsinh(y) = ln(x+
√
x2 + 1)

10The inverse hyperbolic sine function has been gaining popularity as an alternative to the natural logarithmic
transformation which is not defined at zero or negative values (Bellemare and Wichman, 2020; Norton, 2022).
However, it has also been criticised for its scale dependence (Chen and Roth, 2022). Since the scale of patents
is less controversial than that of prices or weights, and the regulatory effects come mainly from the intensive
margin, we consider the arcsinh transformation to be suitable approach in our analysis.
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variation to argue in favour of exogeneity in contrast to the country level analysis.

In the firm-level analysis, we replace country FE with more granular sector and firm FE (αs,

αf ) to control for unobserved heterogeneity across sectors and firms. The combination of sector,

firm and time FE with a broad set of controls substantially reduces any potential omitted vari-

able bias. In order to control for potential anticipation effects of new policies, we additionally

include next year’s EPS change in the firm-level specification, assuming perfect foresight. As

this is a strong assumption and the inclusion reduces the magnitude of our estimated effects

only slightly, we decided not to include it in the baseline specification. The standard errors are

clustered on country or firm-level respectively to allow for fully flexible time series dependence

in the errors within each block.11

A limitation of our empirical approach is that the measurement of the timing of events, in

particular the implementation dates of policies, is imperfect. The lags between policy change

and the economic effect of interest, in our case captured by the the filing of a patent, are likely

to differ by firm and depend on policy type. For instance, market-based instruments such as

taxes and cap-and-trade schemes may trigger a gradual readjustment, allowing a firm to invest

in research and development, while mandates and bans call for a more immediate reaction on

the part of the firm. These differences may cloud inference. The majority of studies exploring

the relationship between environmental regulation and innovation focus on a specific regulation,

which has a precise implementation date that often helps to reinforce the causal identification

as elaborated in section 2. This comes, however, at the expense of external validity which is

crucial for policy-makers.

We believe that there is a value in contributing to the body of knowledge regarding the eco-

nomic impact of environmental policies using firm-level data also through multi-country and

multi-sector studies. The type of insights our study can generate are relevant to EU-level

policy-makers, who are interested in the economic impacts of environmental policy beyond spe-

cific instruments and regulated sectors. The present study reflects the real life context, in which

firms are affected, directly or indirectly, by an often overlapping mix of policies at any partic-

ular time. As such, it enhances our understanding of transition risks and possible regulatory

responses to it. Although we consider the trade-off between precise causal inference and external

11Given the national EPS indices and national institutions in charge of collecting the firm data, clustering SE
at the country level would also be appropriate in the firm-level specification. Due to the low number of clusters
(6) and the more relevant correlation among firm observations, we decided to use firm clusters.
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validity acceptable, we seek to strip away possible sources of bias through additional analyses

and multiple robustness checks. Beside the use of a broad set of macro and firm controls as

well as firm, sector and year fixed effects, we apply a serially uncorrelated measure of policy

changes. In addition to the anticipation effect test outlined above, we analyse large changes in

the EPS index, which are defined as such if they are among the top 25% of the country’s EPS

change distribution. These large regulatory change events have a distinct timing (as shown in

figure 2). All these variations lead to robust results on the relationship between environmental

regulation and green innovation, as presented in the following section.

6 Results

In this section, we present the impact of changes in the environmental policy stringency on the

number of innovations in clean and non-clean technology classes. First, we describe the results

at the aggregate level for a pooled sample of 15 countries. We then use firm-level data to control

for potential sources of endogeneity. In analysing the aggregate country data, we consider the

full firm population, including entry and exit, the relative importance of effects across firms

weighted by their size, as well as the patenting activities of public sector organisations and

universities. This analysis may, however, suffer from aggregation and endogeneity bias. The

firm-level analysis can address these problems, but has limitations in terms of population repre-

sentativeness and tracking firm entry and exit dynamics. Additional results, which include for

instance the regression results for dirty technologies and the baseline results only for the subset

of firms that ever patent during the surveyed period, are in the Appendix.

6.1 Country-level results

Figure 6 shows the impulse response functions (IRF) at the country level, using the change

in the share of environment-related technology patents as dependent variable. The green lines

show the mean responses to a one percentage point increase in policy stringency over the five

year horizon and the grey bands depict the respective confidence intervals around the point esti-

mations (68% and 90%). In the left column of Figure 6 we show the clean innovation responses

of the countries with the lowest greenhouse gas (GHG) emissions per capita (bottom 50% of

the sample). We contrast them to the responses of the high polluting countries (top 50%) in
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the right column.12 The results are largely not statistically significant, with the exception of

a very small effect at year 2 for the non-market based policy component and at year 3 for the

technology support component in the low polluting countries.

We repeat the exercise with different specifications of regulatory shock, for instance, instead of

a time-series of positive changes in the EPS index, we use a dummy that equals one if a salient

change takes place that is among the largest 25% of changes in a country within our period

of observation, however, the results are still not statistically significant. There is substantial

heterogeneity among countries and their responses seem depend on their pollution intensity.

Nonetheless, aggregate responses mask heterogeneous patterns across firms operating in a given

country and sector as indicated by the large confidence bands. Moreover, there are still some

remaining concerns about potential endogeneity at the aggregate level. For these reasons, the

next section replicates the analysis at the firm-level.

6.2 Firm-level results

Figure 7 shows the response differences of high versus low polluting firms on patented clean

(left column; green line) and non-clean (right column, blue line) innovations to a one percent-

age point increase in the EPS indicator and its sub-indicators. The grey areas represent the

corresponding confidence intervals (68% and 90%). We compare the responses of firms that are

assigned to the top four bins by our machine learning algorithm to those assigned to the bottom

six emission bins by our machine learning algorithm (as described in section 4.4). We decided

for this unequal split as there are fewer high-polluters than there are firms in the low-polluter

group. In the specifications at firm level, we make use of the granularity of the firm-level data

to control for sector and firm fixed effects so that we capture a broad set of reasons for differ-

ent innovation growth rates and reduce the omitted variable bias to a minimum. The effects

on low-polluting firms’ patenting behaviour confirm the validity of our identification approach,

and hence the direction of the estimated effects. We find no regulatory impact on low-polluting

firms and significantly different effects on high-polluting firms as shown in the Appendix (Fig-

ures A2-A4). The inverse sine is approximately equal to log(2yi) or log(2) + log(yi), and so it

can be interpreted in the same way as a standard logarithmic dependent variable. We already

approximated the elasticity interpretation in the charts for convenience. The values of the es-

timated regression coefficients are depicted in Table A5 and Table A6.

12Belgium, Germany, Estonia, Finland, Ireland, Luxembourg and the Netherlands are in all years among the
countries with above median pollution intensity, Greece in 8 years, Austria in 3 years.
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Figure 6: IRF - Environment-related patenting to EPS change (country level)
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Note: Cumulative impulse responses of the environment-related patenting share to 1 pp EPS shocks (positive
changes) over 5 years. Left column contains countries with low pollution intensity, right column contains the
countries with high pollution intensity. Green line represents mean responses, dark grey area 68% confidence
bands, light grey area 90% confidence bands.
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Figure 7: IRF - Clean/non-clean innovation to EPS change (firm level)
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Note: Cumulative impulse responses of the relative change in clean and non-clean patent families to 1 pp EPS
shocks (positive changes) over 5 years. Left column (green) - clean innovation, right column (blue) - non-clean
innovation. Green/blue lines represents mean responses, dark grey area 68% confidence bands, light grey area
90% confidence bands.
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A tightening in environmental regulation spurs a positive response in innovation efforts in clean

technologies for high-polluting firms, in contrast to low-polluting firms. A one percentage point

increase in the EPS leads to approximately 0.5% increase in the cumulative number of clean

innovations with the effect at its strongest after three years. This aggregate effect is mainly

driven by the positive innovation responses due to non-market and technology support policies.

Therefore, we can confirm hypothesis 1, according to which environmental regulation tight-

ening would be expected to yield a statistically significant effect on green innovation.

Moreover, we find no statistically significant (negative) impact on other types of innovation for

the overall EPS indicator, as well as the marked and non-market based index components. Thus,

we find support for hypothesis 3, which holds that in response to regulatory change, clean

innovation will not necessarily crowd-out other types of innovation. In the case of technology

support policies, we even report a small but significantly positive impact on innovations that

are not clean. This suggests that there are potential spillovers to non-clean innovations after

the expansion of this type of policies. This might stem from research in green technologies that

lead to new developments in other fields or the deviating classifications of ”green” technology.

In general, the patterns of the various policy sub-types are different from each other. While

the market-based component produces almost no change in either clean innovations or non-

clean innovation, the non-market based component produces statistically significant responses

in clean innovation as does the technology support component, which includes R&D subsidies

and feed-in-tariffs. Based on these results, we have to reject hypothesis 2 that market-based

regulation has a stronger effect in terms of incentivising green innovation, as neither high nor

low-polluting firms intensify their patenting activities. The positive effects of the other policy

types seems to have a different profile over time. The implementation of binding standards

(non-market based component) directly mandate an adjustment and hence, produces a faster

increase in innovation compared to the technology support component. However, in both cases

it takes some time until new regulations lead to the filing of new innovations, which shows the

importance of an empirical approach that allows for dynamic responses.

As there are many firms that do not file any patents and we want to know specifically which

firms drive our results, we also examine whether the environmental regulation tightening mostly

affects the extensive or the intensive margin. We use the pre-sample patent stock to determine

which companies have previously never filed a patent and which have and rerun our firm-specific
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local projections. The corresponding regression tables are included in the Appendix (Tables A11

and A12). Our results appear to be mostly driven by the intensive margin, which is consistent

with the findings of Dechezleprêtre et al. (2023). Similarly, we restrict our sample to firms

that have filed for at least one patent in the surveyed period 2003-2019. The response tracks

similar patterns to when we run the analysis on the entire sample, however, the effects are more

pronounced in magnitude, which is consistent with expectations. The results are shown in the

Appendix (Figures A6 and A7).

6.3 Robustness & discussion

As robustness checks, we carried out several additional exercises. First, we conducted the anal-

ysis with a ’large reform’ indicator as described in section 4.1. We show the results in Figure

8. While for most of the EPS index sub-components the results are not statistically signifi-

cant in this specification, for non-market based regulation the response in clean patenting of

highly-polluting firms is still both significant and large. A large reform leads to an almost 10%

increase in the number of clean innovations filed in the high-polluting group compared to the

low-polluting group. We also test both reform specifications with cumulative changes in dirty

(instead of non-clean) innovations as the response variable (see Figures A4 and A5 in the Ap-

pendix) but see no statistically significant response. The only exception is a minor short-term

decline in dirty technology patenting for the large reform specification in the case of market-

based instruments.

In as far as the EPS market-based index captures the signal from more flexible forms of regula-

tion, our results challenge the ”weak” and ”narrow” version of the Porter hypothesis, as we find

that market-based based regulation is associated with non-significant effects on green innova-

tions and lower green innovation growth compared to increased stringency in technology-support

and non-market based policies. The finding that non-market based regulation has a stronger

effect on clean technology patenting would appear to be at odds with much of the established

theory, but also highlights the concern that (at the current stringency level) market policies

are not stringent enough. As Johnstone et al. (2010a) note, however, the distinction between

market-based regulation and direct command-and-control is largely arbitrary and what matters

more is specific policy attributes such as predictability, flexibility, incidence and depth. They

emphasise that there is no precise mapping between the main policy types and these attributes.
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Figure 8: IRF - Clean/non-clean innovation to large EPS change (firm level)
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Note: Cumulative impulse responses of the relative change in clean and non-clean patent families to large EPS
shocks (top 25%) over 5 years. Left column (green) - clean innovation, right column (blue) - non-clean innovation.
Green/blue lines represents mean responses, dark grey area 68% confidence bands, light grey area 90% confidence
bands.

Given the comparable dataset and methodological approach, it is interesting to relate our re-

sults with those in our study on productivity growth (Benatti et al., 2024). There we found

that market-based policies have a significantly negative impact on firm productivity over the

ECB Working Paper Series No 2946 31



whole projection horizon, but at a much lower level than the non-market based policies. This

is in accordance with the ”narrow” Porter hypothesis that states that market based measures

are more productivity-friendly than non-market based measures. However, in contrast to the

”strong” Porter hypothesis, the market-based tools still have negative productivity effects. This

finding brings to the fore the necessary trade-offs in setting policy to address environmental ex-

ternalities. While more flexible instruments, which enable firms to trade obligations, have the

lowest cost in terms of sacrificing productivity, they tend to produce weaker clean innovation

outcomes and vice-versa.

Finally, we also explore to which extent firms with different characteristics and capabilities deal

with regulatory reforms. However, we detect no statistically significant differences between high

and low polluting firms regarding their innovation response to more stringent policies based on

their total factor productivity, age, size, equity ratio, cash holdings or patenting record (see

Table A8 and A9. Also a decomposition according to different sectors (Table A10) does not

show significant differences. This is a departure from our productivity study (Benatti et al.,

2024), where we show that larger firms, firms with better access to financial markets and firms

with more research experience face lower losses in terms of productivity. While heterogeneity

among firms matter in terms of productivity responses due to vast differences among firms in

the sample, the group of patenting firms are more homogeneous and additional differentiation

matters less. At the same time, the relatively small sample of patenting firms makes it harder

to clearly identify heterogeneities even if they exist.

7 Conclusion

Innovating in clean technologies is not only essential for achieving EU’s climate neutrality tar-

gets but also for increasing or at least maintaining productivity in a world of ever increasing

climate policy stringency. Our analysis offers insights into the nature of the impacts of environ-

mental policy, and its main variants, on firms’ innovating activity and in conjunction with the

findings in Benatti et al. (2024) into economic impacts of environmental policy more broadly.

Causal identification is inevitably challenging in this context, with reverse causality being of

particular concern.

Our findings suggest consistency with the ”weak” version of the Porter hypothesis, however, ap-

pear to contradict the ”narrow” version. We showed that highly polluting firms tend to respond
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to environmental policy tightening by increasing their innovation efforts in clean technologies

in an economically significant manner, especially in response to large changes in regulation. At

the same time, we largely observe no statistically significant change to their innovation efforts in

other, non-clean technology classes. This finding suggests that innovation in clean technologies,

is not necessarily crowding out innovation elsewhere. The results also show that it takes some

time to translate regulatory changes into newly filed patents as effects are only seen after two

to three years. Our data further allows us to disentangle the relative effectiveness of different

environmental policy types - market-based, non-market based and technology support. We find

that technology support policy and non-market based policy instruments tend to have a stronger

impact on clean innovation compared to market-based policy. Particularly in the case of large

environmental policy stringency tightening shocks, non-market based policy induces a strong

response in clean technology innovation, which peaks three years after the event. In as far as

the implied flexibility of market-based policy instruments may come, at least to some degree,

at the expense of certainty at the individual firm level, our findings are consistent with the

notion that policy uncertainty has adverse effects on investments for the low-carbon economy

(e.g. Noailly et al., 2022; Johnstone et al., 2010a).

Innovation is a key channel for productivity growth. In Benatti et al. (2024), we showed that

environmental policy stringency increases have a negative impact on productivity in the time

horizon we were able to explore, hence challenging the ”strong” version of the Porter hypothesis.

Amongst the various policy types, however, the impact of technology support policy was nega-

tive only during a short transition period after which it had a positive impact on productivity

growth. It would appear, therefore, that technology support policies in the form of R&D sub-

sidies offer may possibly offer a ’no-regret’ option for inducing innovation in clean technologies

while limiting the possibility of causing a productivity decrease in the regulated firms. While

increasing stringency in non-market based environmental policy had a negative impact on pro-

ductivity in the five year horizon we observed, it is possible that the clean innovation increase

these policy instruments induce may offset or even reverse the productivity decline beyond that

time horizon.
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Appendix

Descriptives

Table A1: Summary statistics - firm characteristics

Mean SD Min p25 Median p75

Belgium
Firm age 21.55 13.49 0 12.00 19.00 27.00
Employees 17.22 401.84 1.00 2.00 4.00 9.00
Fixed intangible capital intensity 77,022.96 7,918,942.88 -1,524,679.40 0.00 298.00 3,027.50
Return on assets 14.63 15.51 -115.33 6.08 12.56 21.21
Emission bin estimation 0 0.12 0 0 0 0
Equity-assets ratio 32.62 30.90 -100.00 13.35 30.79 53.57

Germany
Firm age 30.06 25.97 0 16.00 23.00 35.00
Employees 58.52 908.50 1.00 4.00 13.00 35.00
Fixed intangible capital intensity 103,632.60 4,999,215.62 -6,686,549.50 0.08 164.93 2,015.14
Return on assets 12.93 13.86 -159.68 5.12 11.29 19.42
Emission bin estimation 0.02 0.26 0 0 0 0
Equity-assets ratio 35.93 35.03 -100.00 11.73 34.15 62.07

Spain
Firm age 16.32 9.81 0.00 9.00 15.00 21.00
Employees 20.03 6,143.86 1.00 2.00 4.00 10.00
Fixed intangible capital intensity 59,485.85 6,564,793.65 -78,982,696.00 0.00 965.28 7,050.15
Return on assets 20.65 75.48 -169.95 1.85 6.70 14.64
Emission bin estimation 0 0.08 0 0 0 0
Equity-assets ratio 32.09 34.96 -100.00 9.60 29.99 57.36

France
Firm age 18.09 13.00 0 9.00 15.00 24.00
Employees 29.40 599.24 1.00 2.00 5.00 12.00
Fixed intangible capital intensity 55,273.17 3,360,115.12 -13,130,103.00 375.51 2,897.62 17,629.15
Return on assets 10.83 14.83 -209.38 3.28 9.78 18.15
Emission bin estimation 0 0.11 0 0 0 0
Equity-assets ratio 33.90 28.47 -100.00 16.97 34.46 53.29

Italy
Firm age 20.95 13.09 0 12.00 18.00 28.00
Employees 19.91 206.89 1.00 2.00 6.00 13.00
Fixed intangible capital intensity 33,542.88 864,838.29 -9,985,670.00 238.24 1,841.73 9,274.91
Return on assets 33.20 83.89 -97.69 4.15 8.67 17.89
Emission bin estimation 0 0.09 0 0 0 0
Equity-assets ratio 23.42 24.29 -100.00 6.98 18.11 37.14

Portugal
Firm age 20.28 14.14 0 11.00 17.00 25.00
Employees 10.79 104.68 1.00 2.00 3.00 7.00
Fixed intangible capital intensity 16,436.09 760,404.23 -12,038,928.00 0.00 0.00 175.74
Return on assets 6.52 23.79 -706.16 0.96 6.67 15.05
Emission bin estimation 0.01 0.14 0 0 0 0
Equity-assets ratio 32.87 37.21 -100.00 11.11 31.79 59.42
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Table A3: List of CPC codes

Clean patent classes

Y02B Climate change mitigation technologies related to buildings including hous-
ing and appliances or related end-user applications

Y02C Capture, storage, sequestration or disposal of greenhouse gases (GHG)
Y02D ICT technologies aiming at their own energy reduction
Y02E Climate change mitigation technologies in energy generation, transmission

and distribution
Y02P Climate change mitigation technologies in the production or processing of

goods
Y02T Climate change mitigation technologies related to transport
Y02W Climate change mitigation technologies related to wastewater treatment or

waste management

Dirty patent classes

C10G1 Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-
melting solid carbonaceous or similar materials, e.g. wood, coal, oil-sand, or
the like B03B

C10L1 Fuel
C10J Production of fuel gases by carburetting air or other gases
E02B Hydraulic engineering
F01K Steam engine plans; steam accumulators; engine plants not otherwise pro-

vided for; engines using special working fluids or cycles
F02C Gas-turbine plants; air intakes for jet-propulsion plants; controlling fuel sup-

ply in air-breathing jet-propulsion plants
F22 Steam generation
F23 Combustion apparatus; combustion processes
F24J Production or use of heat not otherwise provided for
F27 Furnaces; kilns; ovens; retorts
F28 Heat exchange in general
F02B Internal-combustion piston engines; combustion engines in genera
F02D Controlling combustion engines
F02F Cylinders, pistons, or casings for combustion engines; arrangement of sealing

in combustion engines
F02M Supplying combustion engines with combustibles mixtures or constituents

thereof
F02N Starting of combustion engines
F02P Ignition (other than compression ignition) for internal-combustion engines
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Main results - regression tables

Table A5: Baseline specification - the response of clean technology patenting to change in EPS

Dependent variable: cumulative of differences in arcsinh(# of clean innovations)
h=0 h=1 h=2 h=3 h=4 h=5

CO2 0.00301 -0.0166 -0.0277 -0.0605** -0.0620** -0.0272
(0.0108) (0.0141) (0.0177) (0.0187) (0.0213) (0.0229)

EPS shock -0.00000165 -0.00000547 -0.00000817* 0.0000132** -0.00000384 0.00000337
(0.00000368) (0.00000447) (0.00000464) (0.00000495) (0.00000585) (0.00000614)

CO2 * EPS shock -0.00249 0.00208 0.00509** 0.00489* 0.00368 0.000198
(0.00174) (0.00179) (0.00208) (0.00255) (0.00230) (0.00250)

Output gap 0.00000941 0.0000139 -0.00000870 -0.0000232 -0.0000234 0.00000556
(0.0000120) (0.0000180) (0.0000251) (0.0000287) (0.0000309) (0.0000345)

GDP/capita -0.00169* -0.00440** -0.00582** -0.00696** -0.00967** -0.0151***
(0.000861) (0.00138) (0.00215) (0.00271) (0.00341) (0.00427)

EPL index 0.000615* 0.000742* 0.00141** 0.000158 -0.000895* -0.00158**
(0.000330) (0.000384) (0.000473) (0.000510) (0.000491) (0.000531)

R&D spending 0.000409** 0.000713** 0.000410 0.00111** 0.00269*** 0.00392***
(0.000207) (0.000317) (0.000422) (0.000486) (0.000579) (0.000733)

Startup costs -0.000375*** -0.000528*** -0.000394*** -0.000542*** -0.000814*** -0.000987***
(0.0000667) (0.0000956) (0.000106) (0.000126) (0.000130) (0.000136)

No. employees 0.000190 0.000184 0.000341 0.000161 0.000467 0.000425
(0.000172) (0.000277) (0.000488) (0.000453) (0.000656) (0.000724)

ROA -0.00000110 0.0000214 0.000000254 0.00000164 -0.0000164 -0.00000865
(0.0000137) (0.0000201) (0.0000255) (0.0000297) (0.0000347) (0.0000446)

Age 0.0000892 0.000799 0.00198*** 0.00196*** 0.00223** 0.00299***
(0.000372) (0.000518) (0.000425) (0.000550) (0.000680) (0.000787)

Time FE Yes Yes Yes Yes Yes Yes
Sector FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
N 10,506,630 8,881,329 7,677,256 6,650,852 5,708,208 4,858,612

Note: Standard errors in parentheses. Local projections for h years ahead. CO2 indicator equals to one if a
firm belongs to the top 4 bins of polluting firms. All controls are lagged except for output gap. Age, size and
ROA are standardised. * p<0.10, ** p<0.05, *** p<0.01
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Table A6: Baseline specification - the response of other (not clean) technology patenting to
change in EPS

Dependent variable: cumulative of differences in arcsinh(# of not clean innovations)
h=0 h=1 h=2 h=3 h=4 h=5

CO2 0.00682 -0.00708 -0.0220 -0.0454 -0.0472 -0.0304
(0.0149) (0.0209) (0.0260) (0.0286) (0.0302) (0.0356)

EPS shock 0.000274 -0.00187 0.000521 -0.00318 -0.00274 -0.00282
(0.000455) (0.00178) (0.000877) (0.00333) (0.00300) (0.00310)

CO2 * EPS shock -0.00316 0.00120 0.00295 0.00115 -0.000116 -0.00167
(0.00209) (0.00315) (0.00346) (0.00406) (0.00339) (0.00486)

Output gap 0.0000596* 0.00000816 0.0000631 0.000181** 0.000174* 0.000522***
(0.0000350) (0.0000502) (0.0000713) (0.0000827) (0.0000918) (0.000107)

GDP/capita -0.00376 -0.00108 -0.0112* -0.0299*** -0.0352*** -0.0444***
(0.00256) (0.00391) (0.00583) (0.00746) (0.00933) (0.0115)

EPL index 0.00504*** 0.00962*** 0.0106*** 0.00724*** -0.00127 -0.00738***
(0.00105) (0.00120) (0.00147) (0.00146) (0.00137) (0.00151)

R&D spending 0.00505*** 0.00885*** 0.00701*** 0.0114*** 0.0141*** 0.0101***
(0.000606) (0.000889) (0.00117) (0.00133) (0.00152) (0.00182)

Startup costs -0.00141*** -0.00300*** -0.000627** -0.000419 -0.00136*** -0.00277***
(0.000167) (0.000251) (0.000305) (0.000362) (0.000365) (0.000386)

No. employees -0.000368 -0.000967* -0.00189 -0.00214 -0.00192 -0.00151
(0.000233) (0.000575) (0.00122) (0.00146) (0.00140) (0.00118)

ROA 0.0000848** 0.0000953 0.000131* 0.000106 -0.000171* -0.000309**
(0.0000411) (0.0000599) (0.0000742) (0.0000844) (0.0000968) (0.000110)

Firm age 0.00190** 0.00172 0.00552*** 0.00223 0.00000471 0.00880***
(0.000644) (0.00105) (0.00147) (0.00173) (0.00186) (0.00242)

Time FE Yes Yes Yes Yes Yes Yes
Sector FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
N 10,506,630 8,881,329 7,677,256 6,650,852 5,708,208 4,858,612

Note: Standard errors in parentheses. Local projections for h years ahead. CO2 indicator equals to one if a
firm belongs to the top 4 bins of polluting firms. All controls are lagged except for output gap. Age, size and
ROA are standardised. * p<0.10, ** p<0.05, *** p<0.01
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Alternative specifications of the dependent variable

Table A7: Baseline specification - the response of clean technology patenting to change in EPS;
alternative transformation of the dependent variable using ln(1+patent families)

Dependent variable: cumulative of differences in ln(1+patent families)
h=0 h=1 h=2 h=3 h=4 h=5

CO2 0.000953 -0.0133 -0.0237* -0.0505*** -0.0527** -0.0247
(0.00851) (0.0112) (0.0141) (0.0151) (0.0173) (0.0183)

EPS shock -0.00000114 -0.00000432 -0.00000646* 0.0000102** -0.00000308 0.00000260
(0.00000287) (0.00000349) (0.00000362) (0.00000387) (0.00000458) (0.00000480)

CO2*EPS shock -0.00181 0.00175 0.00420** 0.00424** 0.00327* 0.000444
(0.00137) (0.00145) (0.00167) (0.00205) (0.00187) (0.00201)

Output gap 0.00000843 0.0000121 -0.00000510 -0.0000167 -0.0000158 0.00000685
(0.00000937) (0.0000142) (0.0000197) (0.0000226) (0.0000243) (0.0000273)

GDP/capita -0.00141** -0.00358** -0.00479** -0.00577** -0.00801** -0.0123***
(0.000675) (0.00109) (0.00170) (0.00216) (0.00272) (0.00340)

EPL index 0.000490* 0.000595** 0.00111** 0.000148 -0.000716* -0.00122**
(0.000257) (0.000300) (0.000371) (0.000401) (0.000384) (0.000418)

R&D spending 0.000340** 0.000581** 0.000352 0.000911** 0.00216*** 0.00315***
(0.000163) (0.000249) (0.000333) (0.000385) (0.000460) (0.000582)

Startup costs -0.000299*** -0.000422*** -0.000320*** -0.000439*** -0.000648*** -0.000787***
(0.0000524) (0.0000751) (0.0000836) (0.0000999) (0.000103) (0.000108)

No. employees 0.000150 0.000143 0.000266 0.000113 0.000363 0.000349
(0.000135) (0.000218) (0.000385) (0.000360) (0.000518) (0.000582)

ROA -0.000000782 0.0000173 0.000000318 0.00000142 -0.0000128 -0.00000606
(0.0000107) (0.0000158) (0.0000202) (0.0000235) (0.0000273) (0.0000357)

Firm age 0.0000829 0.000643 0.00157*** 0.00159*** 0.00182*** 0.00242***
(0.000293) (0.000409) (0.000336) (0.000438) (0.000543) (0.000631)

Time FE Yes Yes Yes Yes Yes Yes
Sector FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
N 10,506,630 8,881,329 7,677,256 6,650,852 5,708,208 4,858,612

Note: Standard errors in parentheses. Local projections for h years ahead. CO2 indicator equals to one if a
firm belongs to the top 4 bins of polluting firms. All controls are lagged except for output gap. Age, size and
ROA are standardised. * p<0.10, ** p<0.05, *** p<0.001
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Heterogeneity results

Table A8: Heterogeneity analysis; h=3

Dependent variable: cumulative of differences in arcsinh(# of clean innovations; h=3)
(1) (2) (3) (4) (5) (6) (7)

CO2 -0.0708*** -0.0325* -0.0694*** -0.0719*** -0.0951*** -0.0657*** -0.0500**
(0.0200) (0.0189) (0.0192) (0.0187) (0.0198) (0.0195) (0.0235)

EPS shock 0.0000108** 0.0000143** 0.0000108* 0.0000116** 0.0000111** 0.0000127** 0.00000875*
(0.00000487) (0.00000506) (0.00000555) (0.00000491) (0.00000502) (0.00000505) (0.00000478)

CO2*EPS shock 0.00645** 0.00335 0.00519* 0.00539** 0.00470* 0.00485* 0.00161
(0.00279) (0.00234) (0.00282) (0.00263) (0.00248) (0.00263) (0.00303)

CO2*EPS shock*Employees -0.0000890
(0.0000598)

CO2*EPS shock*Firm age 0.00123
(0.00145)

CO2*EPS shock*TFP level -0.00192
(0.00392)

CO2*EPS shock*Equity ratio -0.000175
(0.000107)

CO2*EPS shock*Cumulative patents -0.0000865
(0.000251)

CO2*EPS shock*Cash holdings 0.000271
(0.000700)

CO2*EPS shock*∆Cash holdings -0.00453
(0.00336)

Time FE Yes Yes Yes Yes Yes Yes Yes
Sector FE Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes
Aggregate controls (Output gap, R&D, EPL) Yes Yes Yes Yes Yes Yes Yes
Firm characteristics (age, size, ROA) Yes Yes Yes Yes Yes Yes Yes
N 6,650,852 6,650,852 6,286,273 6,645,044 6,650,852 6,258,264 6,374,162

Note: Standard errors in parentheses. CO2 indicator equals to one if a firm belongs to the top 4 bins of
polluting firms. All controls are lagged except for output gap. Age, size and ROA are standardised. * p<0.10,
** p<0.05, *** p<0.01

Table A9: Heterogeneity analysis; h=5

Dependent variable: cumulative of differences in arcsinh(# of clean innovations; h=5)
(1) (2) (3) (4) (5) (6) (7)

C02 -0.0443* -0.00998 -0.0264 -0.0477** -0.136** -0.0280 -0.0131
(0.0245) (0.0216) (0.0227) (0.0228) (0.0454) (0.0235) (0.0285)

EPS shock -0.00000123 0.00000432 0.00000241 0.00000117 0.0000719 0.00000378 0.000000363
(0.00000616) (0.00000632) (0.00000710) (0.00000609) (0.000108) (0.00000626) (0.00000604)

CO2*EPS shock 0.00106 0.000187 0.000105 0.00119 -0.000125 0.000283 -0.00438
(0.00253) (0.00266) (0.00317) (0.00259) (0.00416) (0.00264) (0.00394)

CO2*EPS shock*Employees -0.0000886
(0.0000606)

CO2*EPS shock*Firm age -0.0000139
(0.00121)

CO2*EPS shock*TFP level -0.00386
(0.00591)

CO2*EPS shock*Equity ratio -0.000242
(0.000149)

CO2*EPS shock*Cumulative patents 0.000342
(0.000220)

CO2*EPS shock*Cash holdings -0.000410
(0.000838)

CO2*EPS shock*∆Cash holdings -0.00619
(0.00458)

Time FE Yes Yes Yes Yes Yes Yes Yes
Sector FE Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes
Aggregate controls (Output gap, R&D, EPL) Yes Yes Yes Yes Yes Yes Yes
Firm characteristics (age, size, ROA) Yes Yes Yes Yes Yes Yes Yes
N 4,858,612 4,858,612 4,624,177 4,855,440 4,179,564 4,576,254 4,661,694

Note: Standard errors in parentheses. Local projections for h years ahead. CO2 indicator equals to one if a
firm belongs to the top 6 bins of polluting firms. All controls are lagged except for output gap. Age, size and
ROA are standardised. * p<0.10, ** p<0.05, *** p<0.01
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Sector interactions

Table A10: Sector interactions - clean innovations

Dependent variable: cumulative of differences in arcsinh(# of clean innovations)
h=0 h=1 h=2 h=3 h=4 h=5

CO2t−1 0.00493 0.00945 0.00432 -0.00916 -0.00524 -0.00436
(0.00971) (0.0123) (0.00914) (0.00886) (0.0118) (0.00945)

EPS shock 0.00000110 0.00000224 0.0000101** 0.0000178*** 0.0000131** 0.00000599
(0.00000371) (0.00000437) (0.00000444) (0.00000497) (0.00000524) (0.00000538)

CO2t−1 × EPS shock 0.00141 0.000661 0.00109 0.000380 0.00276 0.00271*
(0.00177) (0.00203) (0.00120) (0.00107) (0.00179) (0.00149)

CO2t−1 × NACE F× EPS shock -0.00141 -0.000664 -0.00109 -0.000386 -0.00276 -0.00312**
(0.00177) (0.00203) (0.00120) (0.00107) (0.00179) (0.00155)

CO2t−1 × NACE G × EPS shock -0.000224 -0.00103 -0.00165 0.00102 -0.00211 -0.000880
(0.00213) (0.00206) (0.00143) (0.00161) (0.00189) (0.00239)

CO2t−1 × NACE H × EPS shock -0.000908 0.00225 -0.000897 0.000147 -0.00107 -0.00195
(0.00198) (0.00354) (0.00130) (0.00123) (0.00220) (0.00169)

CO2t−1 × NACE I × EPS shock -0.00141 -0.000657 -0.00108 -0.000374 -0.00276 -0.00271*
(0.00177) (0.00203) (0.00120) (0.00107) (0.00179) (0.00149)

CO2t−1 × NACE J × EPS shock -0.00142 -0.000669 -0.00109 -0.000380 -0.00276 -0.00271*
(0.00177) (0.00203) (0.00120) (0.00107) (0.00179) (0.00149)

CO2t−1 × NACE M × EPS shock 0.00434 0.00940 0.00893 -0.00102 0.0189 0.0152
(0.00584) (0.0101) (0.00964) (0.00145) (0.0201) (0.0167)

CO2t−1 × NACE N × EPS shock -0.00142 -0.000657 -0.00109 -0.000373 -0.00275 -0.00271*
(0.00177) (0.00203) (0.00120) (0.00107) (0.00179) (0.00149)

Aggregate controls Yes Yes Yes Yes Yes Yes
Firm characteristics Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Observations 10,506,630 8,881,329 7,677,256 6,650,852 5,708,208 4,858,612

Note: Standard errors in parentheses. Local projections for h years ahead. CO2 indicator equals to one if a
firm belongs to the top 4 bins of polluting firms. Aggregare controls (EPL index, R&D spending, output gap,
startup costs, GDP/capita) are lagged except for output gap. Firm characteristics (age, size and ROA) are
standardised. Simple interactions between the sector and the EPS shock as well as between the sector and the
CO2 status were also included but not shown for brevity. Sectors are codified at section level; with C being the
base category (C= Manufacturing; F= Construction; G= Wholesale and Retail; H= Transportation and
Storage; I= Accommodation and Food Service Activities; J= Information and Communication; M=
Professional, Scientific and Technical Activities; N= Administrative and Support Service Activities). * p<0.10,
** p<0.05, *** p<0.01
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Intensive/extensive margin

Table A11: Extensive margin - impulse response projections for firms with zero patent stock in
the pre-period 1990-2002; clean innovations

Dependent variable: cumulative of differences in arcsinh(# of clean innovations)
h=0 h=1 h=2 h=3 h=4 h=5

CO2 0.00976 0.0171* 0.0176 0.000262 -0.0119 -0.000958
(0.00605) (0.00929) (0.0112) (0.00917) (0.0147) (0.0130)

EPS shock -0.00000105 -0.00000172 -0.000000808 0.00000761** 0.00000227 0.00000122
(0.00000182) (0.00000229) (0.00000253) (0.00000251) (0.00000319) (0.00000324)

CO2*EPS shock -0.000336 0.0000289 0.000953 0.00147 0.00218 0.00261
(0.00107) (0.000665) (0.00146) (0.00168) (0.00186) (0.00265)

Output gap -0.00000967* -0.00000255 -0.00000410 -0.000000431 -0.00000796 -0.00000139
(0.00000556) (0.00000796) (0.0000112) (0.0000130) (0.0000148) (0.0000154)

GDP/capita 0.000429 0.000279 0.000118 -0.00000909 0.000333 0.000174
(0.000378) (0.000579) (0.000865) (0.00108) (0.00134) (0.00159)

EPL index 0.000126 0.000204 0.000308 -0.000307 -0.000436 -0.000207
(0.000200) (0.000211) (0.000262) (0.000303) (0.000265) (0.000287)

R&D spending 0.00000411 0.000329** 0.000187 0.000261 0.000512** 0.000693**
(0.0000989) (0.000144) (0.000198) (0.000227) (0.000255) (0.000306)

Startup costs -0.0000770** -0.000162*** -0.0000681 -0.0000692 -0.000153** -0.000229***
(0.0000303) (0.0000399) (0.0000488) (0.0000596) (0.0000595) (0.0000618)

No. employees -0.0000689 -0.000146 -0.000453 -0.000507 -0.000297 -0.000391
(0.0000514) (0.000172) (0.000333) (0.000501) (0.000524) (0.000291)

ROA -0.00000216 0.00000671 0.00000271 -0.0000105 -0.0000166 -0.00000932
(0.00000805) (0.0000127) (0.0000136) (0.0000166) (0.0000208) (0.0000283)

Firm age -0.0000951 0.000142 0.000472** 0.000409 0.000175 0.000466
(0.000116) (0.000117) (0.000159) (0.000269) (0.000338) (0.000292)

Time FE Yes Yes Yes Yes Yes Yes
Sector FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
N 10,260,487 8,663,533 7,482,234 6,476,685 5,553,757 4,722,853

Note: Standard errors in parentheses. Local projections for h years ahead. CO2 indicator equals to one if a
firm belongs to the top 4 bins of polluting firms. All controls are lagged except for output gap. Age, size and
ROA are standardised. * p<0.10, ** p<0.05, *** p<0.01
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Table A12: Intensive margin - impulse response projections for firms with a patent stock in the
pre-period 1990-2002 greater than zero; clean innovations

Dependent variable: cumulative of differences in arcsinh(# of clean innovations)
h=0 h=1 h=2 h=3 h=4 h=5

CO2 -0.00889 -0.0610** -0.0829** -0.135*** -0.120** -0.0550
(0.0238) (0.0299) (0.0373) (0.0401) (0.0436) (0.0478)

EPS shock 0.0000309 0.0000585 -0.000122 0.0000572 -0.000122 -0.00000585
(0.000101) (0.000109) (0.000111) (0.000114) (0.000129) (0.000132)

CO2*EPS shock -0.00515 0.00406 0.00951** 0.00790 0.00452 -0.00266
(0.00349) (0.00369) (0.00409) (0.00496) (0.00435) (0.00422)

Output gap 0.000221 -0.000157 -0.000749 -0.00142** -0.00164** -0.0000629
(0.000304) (0.000462) (0.000592) (0.000676) (0.000699) (0.000783)

GDP/capita -0.0524*** -0.0835*** -0.0840** -0.106*** -0.119** -0.198***
(0.0155) (0.0206) (0.0265) (0.0314) (0.0377) (0.0497)

EPL index 0.0223 0.00632 0.00281 0.00404 0.0451 0.00186
(0.0152) (0.0172) (0.0195) (0.0301) (0.0360) (0.0343)

R&D spending 0.00489 -0.00339 -0.0126 -0.0107 0.0168 0.0309
(0.00912) (0.0151) (0.0206) (0.0256) (0.0300) (0.0338)

Startup costs -0.00327 -0.000238 0.00290 0.00424 -0.00418 -0.00527
(0.00251) (0.00338) (0.00358) (0.00397) (0.00488) (0.00545)

No. employees 0.000577 0.000534 0.000751 0.000410 0.000713 0.000648
(0.000592) (0.000701) (0.000935) (0.000711) (0.00102) (0.00107)

ROA 0.000255 0.00129 0.000358 0.00106 0.000572 0.000767
(0.000716) (0.000911) (0.00118) (0.00127) (0.00133) (0.00156)

Firm age -0.0131 -0.0114 -0.000585 -0.00731 -0.00966 -0.000596
(0.00920) (0.0122) (0.00701) (0.00816) (0.00842) (0.00865)

Time FE Yes Yes Yes Yes Yes Yes
Sector FE Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
N 246,143 217,796 195,022 174,167 154,451 135,759

Note: Standard errors in parentheses. Local projections for h years ahead. CO2 indicator equals to one if a
firm belongs to the top 4 bins of polluting firms. All controls are lagged except for output gap. Age, size and
ROA are standardised. * p<0.10, ** p<0.05, *** p<0.01

ECB Working Paper Series No 2946 48



Additional figures

Figure A1: Share of patents by corporate entities among all innovations and green innovations
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Note: We use the psn sector variable in PATSTAT version spring 2021. Where an applicant is classified as
belonging to multiple sectors, only one of which is a corporation, we still classify the entity as corporate. More
details about the variable can be found in the PATSTAT catalogue.
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Figure A2: IRF - Clean innovation to EPS changes (high vs low polluters)

-.5

0

.5

1

∼P
er

ce
nt

0 1 2 3 4 5
Year

Aggregate index
Response to shock in EPS  - low polluter

-.5

0

.5

1

∼P
er

ce
nt

0 1 2 3 4 5
Year

Aggregate index
Response to shock in EPS - high polluter

-.5

0

.5

1

∼P
er

ce
nt

0 1 2 3 4 5
Year

Market-based component
Response to shock in EPS  - low polluter

-.5

0

.5

1

∼P
er

ce
nt

0 1 2 3 4 5
Year

Market-based component
Response to shock in EPS - high polluter

-.5

0

.5

1

∼P
er

ce
nt

0 1 2 3 4 5
Year

Non-market based component
Response to shock in EPS  - low polluter

-.5

0

.5

1

∼P
er

ce
nt

0 1 2 3 4 5
Year

Non-market based component
Response to shock in EPS - high polluter

-.5

0

.5

1

∼P
er

ce
nt

0 1 2 3 4 5
Year

Technology support component
Response to shock in EPS  - low polluter

-.5

0

.5

1

∼P
er

ce
nt

0 1 2 3 4 5
Year

Technology support component
Response to shock in EPS - high polluter

Note: Cumulative impulse responses of the relative change in clean patent families to a 1 pp EPS shock (only
positive) over 5 years. Left column - low polluters (bottom 4 bins), right column - high polluters (top 6 bins).
Solid lines represents mean responses, dark grey area 68% confidence bands, light grey area 90% confidence bands.
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Figure A3: IRF - Non-clean innovation to EPS changes (high vs low polluters)
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Note: Cumulative impulse responses of the relative change in non-clean patent families to a 1 pp EPS shock
(only positive) over 5 years. Left column - low polluters (bottom 4 bins), right column - high polluters (top 6
bins). Solid lines represents mean responses, dark grey area 68% confidence bands, light grey area 90% confidence
bands.
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Figure A4: IRF - Dirty innovation to EPS changes (high vs low polluters)
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Note: Cumulative impulse responses of the relative change in dirty patent families to a 1 pp EPS shock (only
positive) over 5 years. Left column - low polluters (bottom 4 bins), right column - high polluters (top 6 bins).
Solid lines represents mean responses, dark grey area 68% confidence bands, light grey area 90% confidence bands.
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Figure A5: IRF - Dirty innovation to large EPS changes (high vs low polluters)
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Note: Cumulative impulse responses of the relative change in dirty patent families to a large EPS shock (top
25%) over 5 years. Left column - low polluters (bottom 4 bins), right column - high polluters (top 6 bins). Solid
lines represents mean responses, dark grey area 68% confidence bands, light grey area 90% confidence bands.
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Figure A6: IRF - Patenting on EPS changes (firm level, only patenters)
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Note: Cumulative impulse responses of the relative change in clean and non-clean patent families to 1 pp EPS
shocks (positive changes) over 5 years. Left column - clean innovation, right column - non-clean innovation.
Violet/red lines represents mean responses, dark grey area 68% confidence bands, light grey area 90% confidence
bands.
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Figure A7: IRF - Patenting on large EPS changes (firm level, only patenters)
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Note: Cumulative impulse responses of the relative change in clean and non-clean patent families to large EPS
shocks (top 25%) over 5 years. Left column - clean innovation, right column - non-clean innovation. Violet/red
lines represents mean responses, dark grey area 68% confidence bands, light grey area 90% confidence bands.
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