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Abstract

This paper proposes a new and robust methodology to obtain conditional density

forecasts, based on information not contained in an initial econometric model. The

methodology allows to condition on expected marginal densities for a selection of variables

in the model, rather than just on future paths as it is usually done in the conditional

forecasting literature. The proposed algorithm, which is based on tempered importance

sampling, adapts the model-based density forecasts to target distributions the researcher

has access to. As an example, this paper shows how to implement the algorithm by

conditioning the forecasting densities of a BVAR and a DSGE model on information about

the marginal densities of future oil prices. The results show that increased asymmetric

upside risks to oil prices result in upside risks to inflation as well as higher core-inflation

over the considered forecasting horizon. Finally, a real-time forecasting exercise yields

that introducing market-based information on the oil price improves inflation and GDP

forecasts during crises times such as the COVID pandemic.

JEL CLASSIFICATION SYSTEM: C11, C53, E31, E37
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Non-technical summary

Policymakers use forecasting densities obtained from macroeconometric models to analyze the

evolution of forecast uncertainty. It is of the utmost importance for them to understand risks to

their forecasts and how risks arising in one economic variable may translate to other variables.

An example based on financial market data could be the significant increase of upside risks

to future energy prices stemming from the Russian invasion of Ukraine. While there exists a

number of methods in the literature to condition model-based forecasting densities on external

information about the future paths of some variables included in the model, less research con-

siders conditioning those forecasting densities not only on the mean but also on higher-order

information about their marginal distributions. But limiting the information set to an expected

path of the model variables ignores the evolution of risks around these forecasts.

To tackle this issue, this paper proposes a new methodology to condition model-based

forecasting densities on off-model information about some of its marginal distributions. Our

methodology can be understood as an extension of the conditional forecasting literature, and

we will refer to it as conditional density forecasting. While the motivation for our method is

similar to the idea of entropic tilting developed in Robertson, Tallman, and Whiteman (2005)

our methodology is more flexible with regards to the information that can be introduced to the

distributions. Our algorithm is based on a tempered importance sampling procedure which

makes it more robust with regards to the support of the densities, and avoids well-known

problems that arise when using entropic tilting in practice. Additionally, we provide several

extensions that make our method applicable for a wide range of forecasting models and their

respective densities.

We illustrate our algorithm by conditioning the forecasting densities of a BVAR and a

DSGE model on information about the marginal densities of oil price futures that can be ob-

tained from their options. Since these option-implied forecasting distributions exhibit large

positive skewness and increased volatility over the full forecasting horizon, we use a multi-

variate skew T distribution to appropriately capture these features. We document the trans-

mission of upside risks from oil price futures to inflation risks in the euro area after the onset of

the Russian invasion of Ukraine. Furthermore, median forecasts of core inflation remain per-
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sistently higher over the forecasting horizon compared to the symmetric model-based forecast

densities. In a real-time forecasting exercise, we evaluate the improvements of our conditional

density forecasts and find substantial increases in the forecasting performance during the onset

of the Covid pandemic.
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1 Introduction

For policymakers, it is of the utmost importance to understand risks to their forecasts and how

changes in the risks arising in one economic variable can translate to other variables. This has

been clear for example in 2022 as a consequence of the Russian invasion of Ukraine, when it has

been a challenging task for policymakers and researchers to gauge the macroeconomic impact

of rising risks in energy prices.

Policymakers and researchers use macroeconometric models to capture the transmission

of changes in one to the rest of variables in the model, as well as to produce forecasts and

understand their balance of risks. When off-model information on the expected evolution of

selected model variables is available, the literature provides several methods on how to condi-

tion model-based multivariate forecasts on the future paths of those variables. These methods

usually assume that those paths correspond to a central moment of those forecasts (see for ex-

ample Waggoner and Zha (1999) or Bańbura, Giannone, and Lenza (2015)). This could also be

understood as a scenario analysis or a conditional forecast. For instance, given an expected

path of energy prices, researchers can obtain a model consistent path for inflation or real GDP.

However, limiting the information set to a central future path ignores the evolution of risks

around these forecasts. So far, less research has considered conditioning forecasting densities

not only on the mean but also on second or even higher moments of some of their marginal dis-

tributions (one notable approach is the entropic tilting methodology developed by Robertson,

Tallman, and Whiteman (2005)). For example, policymakers could have views not only about

the central tendency of the evolution of a variable such as energy prices, but also about other

moments such as their variance, which accounts for uncertainty, and their skewness, which

allows to consider asymmetric upside and downside risks. Therefore, this paper proposes a ro-

bust methodology that allows researchers to condition a model based multivariate forecasting

density on information about the marginal densities of some selected variables in the model,

rather than just on their first moment. Specifically, researchers might want to inform the uncon-

ditional forecasting density from a macroeconometric model with market-based expectations

about the marginal densities of certain economic variables. Therefore, our methodology can

be understood as an extension of the conditional forecasting literature, and thus we will refer
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to it as conditional density forecasting. As an illustration, one can use the implied probability

densities obtained from option prices of futures on a specific model variable. Alternatively,

information about the probability densities could be based on other econometric models (Gi-

acomini and Ragusa (2014)), surveys or expert knowledge/judgement. Additionally, the in-

formation set could be based on assumptions made by researchers or policymakers to conduct

risk analysis under certain scenarios.

Thus we first propose an algorithm that uses tempered importance sampling to re-weight

the model-based forecasting densities to the off-model specified target marginal densities.

While the motivation for our method is similar to the idea of entropic tilting developed in

Robertson, Tallman, and Whiteman (2005) and Krüger, Clark, and Ravazzolo (2017), our

methodology is more flexible with regards to the information that can be introduced to the

distributions via our algorithm. Due to the tempering steps of our algorithm, it is also more

robust with regards to the support of the densities, and avoids well-known problems that arise

when using entropic tilting in practice.

Second, we demonstrate our methodology by conditioning the forecasting distribution

obtained from a BVAR model and a DSGE model on asymmetric forecasting densities of the

future oil price. Information about these densities at different horizons is derived from option

prices of future contracts on oil and implies asymmetric forecasting densities over the full sam-

ple period. Similar to the work of Adrian, Boyarchenko, and Giannone (2019), we model these

densities using the multivariate skew-T distribution of Azzalini and Capitanio (2003), which

we fit to the option-implied moments. In a first exercise, we document the transmission of up-

side risks from future oil prices to inflation risks in the euro area after the onset of the Russian

war in Ukraine. Since the invasion, option-implied densities exhibit high volatility and large

positive skewness at all available forecasting horizons. We find that conditioning forecast den-

sities on market-based upside risks to oil prices would imply upside risks to inflation and core

inflation well above the forecast implied from the BVAR model for all periods. Furthermore,

the median forecast of core inflation would also remain elevated over the forecast period.

In a second exercise, we investigate if historically introducing information from oil-options

would have improved the accuracy of our model-based density forecasts for GDP and inflation

in a BVAR model. While the results indicate no substantial gains in moderate times, we find

substantial increases in the forecasting performance during the onset of the Covid pandemic.
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The the paper is structured as follows: section 2 introduces the necessary information on

importance sampling methods and describes our proposed algorithm. Section 3 provides an

example of our methodology based on forecasting conditional distributions of inflation, given

external information on oil prices. Section 4 proposes several extensions that make our method

applicable for a wide range of forecasting models and their respective densities. Section 5

concludes and gives an outlook on further research.
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2 Methodology

This section describes first our methodology and presents the technical details on importance

sampling methods that are the work-horse of our algorithm. As introduced in section 1 the aim

of our method is to condition the forecasting distribution of a model on off-model information

on the marginal densities of a subset of variables. Formally, this amounts to adapting observa-

tions generated from a model distribution Qθ with density qθ(yi) and parameter vector θ ∈ Θ

to another parametric distribution Pη with density pη(yi) and η ∈ H that satisfies the assump-

tions made by the researcher and that come from outside the original macroeconometric model.

This off-model information about Pη includes, but is not limited to, moments or parameters of

pη(yi). Furthermore, Qθ and Pη are not required to belong to same family of distributions such

that the parameter spaces Θ and H can have different support and dimensions.1 Most impor-

tantly, the external information may also be restricted to only a subset of variables included in

qθ(yi), so that information is only available for some of the marginal densities of pη(yi).

Our methodology is closely related to the entropic tilting methodology of Robertson, Tall-

man, and Whiteman (2005). Entropic tilting uses an optimization procedure to reweight a

distribution so that it satisfies some conditions or moments. Yet, the use of entropic tilting

has some drawbacks. First, while in theory entropic tilting is a powerful non-parametric tool

to introduce information into a model based density forecast, its performance crucially hinges

on the support of the original distribution Qθ . Even if in theory this distribution might be

unbounded, in practice researchers work with a finite set of draws from the distribution to

implement a change in the distribution using entropic tilting. If the original draws of the dis-

tribution do not have enough support for the final density pθ(yi), implying a big change in the

distributions, the methodology will yield unfavourable results and the algorithm might even

fail to find a solution to the entropic tilting optimization procedure. Second, the methodology

also struggles to find a solution as more conditions are introduced in the optimization problem.

A similar point is raised in Krüger, Clark, and Ravazzolo (2017) who show that entropic tilting

with higher dimensional distributions results in poor approximations of the final density since

the weights of the reweighting step become very unevenly distributed.

1For example if Qθ is a normal distribution with θ = (µ, σ) and Pη is a T distribution with η denoting the degrees
of freedom, then Θ = R × R>0 and H = N the set of natural numbers.
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Our methodology thus aims to provide a robust and flexible alternative to entropic tilt-

ing that can be applied in various circumstances. To overcome the aforementioned problems

our methodology is based on tempered importance sampling methods which we adapt to our

needs. With our methodology, we are able to move the draws from the original distribution

slowly to the final distribution that incorporates researcher’s additional information or judge-

ment, even if the original draws do not cover the support of the final distribution.

2.1 Importance Sampling

The cornerstone of our methodology is importance sampling as introduced by Kloek and

Dijk (1978). Since then, importance sampling has been applied in various scientific fields and its

theoretical properties are well understood.2 Importance sampling is helpful when a researcher

wants to evaluate the properties of a distribution, but has only access to draws from other dis-

tribution that might be similar or not to the final one. In our case, we make use of importance

sampling as follows. Suppose that the researcher wanted to introduce external information into

a model-based density forecast. First, given a set of i.i.d. draws {yi}N
i=1 from the model-based

forecasting density yi ∼ qθ(y), the researcher could re-weight those draws so that the final

forecasting density, pη(yi), satisfies the information that they aim to introduce. The importance

weights are calculated as the ratio

wi =
pη(yi)

qθ(yi)

which are normalized to sum to 1 using Wi =
wi

∑N
i wi

. The tuples {yi, Wi}N
i=1 provide a particle

approximation of pη(yi) given by

p̂η(dyi) =
N

∑
i

Wiδyi(dyi). (1)

Resampling the draws using a multinomial distribution with support points yi and

weights Wi yields

ỹi ∼ MN (yi|Wi)

2For example, a thorough treatment of importance sampling can be found in Doucet, Freitas, and Gordon (2001).
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and adapts the draws to the density pη(yi).3

In typical applications of importance sampling, qθ(yi) serves as a proposal density while

pη(yi) is the target density. Furthermore, given that samples from qθ(y) are drawn i.i.d, the

strong Law of Large Numbers ensures that

lim
N→∞

1
N

N

∑
i

h(ỹi)
a.s.−→ EP[h(y)] =

∫
h(y)dPη(y) (2)

This insures that moments of interest such as the mean as well as the quantiles and P-values of

the target distribution can be computed from the adapted draws {ỹi}N
i=1.4

If both density functions are reasonably close with most of their probability mass concen-

trated in the same regions of space, importance sampling can be applied to easily adapt draws

from qθ(y) to pη(y) and is commonly used to obtain samples from a distribution that is hard

to sample from. Similarly to entropic tilting, importance sampling becomes infeasible if the

Kullback-Leibler Divergence between the two distribution is large.

It is also well known that the quality of the importance sampler depends on the variance

of the weights Wi. A high variance of the weights implies that only few draws are resampled,

leading to a large approximation error a phenomenon dubbed weight degeneracy. Therefore,

the right choice of the proposal density is crucial for a good importance sampling approxi-

mation. In many applications, researchers try to choose the proposal distribution such that

the approximation error is small. However, in our case, we assume that the proposal density

3More formally, importance sampling constitutes a change of the measure of a random variable from one measure
Qθ to another measure Pη . Two different measures Q and P are related by

EP[Y] = EQ[ΛY] with Λ =
dP
dQ

(see Theorem 10.6 in Klebaner (2012)). The ratio Λ is called the Radon-Nikodym derivative. Given the two measures
are two absolutely continuous probability distributions Qθ and Pη , the Radon-Nikodym derivative is given by the
ratio of the respective density functions

Λ =
pη(y)
qθ(y)

which is equal to the unnormalized weights w(y) that are calculated in the correction step of importance sampling.
Rewriting the integral in 2 as

EPη
[y] =

∫
yw(y)dQθ(y)

shows that importance sampling exploits the relationship above with a finite sample approximation.
4Additionally, a Central Limit Theorem can be established that enables statistical inference on the quantities

computed from the draws
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is predetermined and it is a model-based (forecasting) density qθ(yi). Yet the target density

pη(yi) might be far apart with a high Kullback-Leibler divergence. For example, external in-

formation that will improve or alter the forecast density of a model might often imply a very

different mean, variance or skewness of pη(yi) compared to qθ(yi). Additionally, this problem

becomes even more severe if the dimension of the model implied density qθ(yi) is large such

that the probability mass is concentrated in a small region of the high dimensional space (see

for example the exhibition in Betancourt (2017)).

Moreover, in many applications researchers do not know a closed form solution to eval-

uate the model-based density qθ(yi). This happens for example when trying to evaluate the

(marginal) forecasting density of a BVAR model accounting for parameter uncertainty. Last

but not least, external information might only be available for transformations of the model

variables of interest which naturally implies a change in the respective marginal distributions

of the variables that needs to be accounted for. For example, market-based options are available

for the level of oil prices, but in macroeconomic models usually variables appear in log-levels

or growth rates.

The aforementioned problems render standard importance sampling methods infeasible

for most applications we target with our methodology. To overcome these problems, our algo-

rithm resorts to tempered importance sampling methods that are discussed in the next section.

2.2 Tempered Importance Sampling

Tempering importance sampling has its roots in the annealed importance sampling method-

ology from Neal (2001) and was introduced to the DSGE modelling literature in Herbst and

Schorfheide (2014) and Herbst and Schorfheide (2019). To remedy the aforementioned problem

of uneven weights when both the proposal and target density are far away from each other, the

idea of tempered importance sampling is to adapt the draws via a sequence of bridge densities

that assign more equal weights to the proposed draws and eventually converges to the true

target. As shown in Herbst and Schorfheide (2019), an easy way to define such a sequence of

bridge distributions is to use an inflated variance that is sequentially reduced to its actual level.

More formally, let p(yi|µη , Ση) be a target density with first and second moments that might
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depend on a set of model parameters η.5 Tempered Importance Sampling uses a sequence of

Nϕ bridge distributions

pn(yi|µη , Ση/ϕn) with 0 < ϕ1 < ... < ϕNϕ = 1 (3)

that converge towards the target distribution p(yi|µη , Ση) for ϕn → 1. Starting from a low value

of ϕ1, p1(yi|µη , Ση/ϕ1) assigns weights to the proposed draws {yi}N
t=1 that are more evenly dis-

tributed. It is important to note, that there is freedom in defining the tempering method of the

function.6 After proposing a first set of N particles from q(yi|µθ , Σθ), a combination of impor-

tance sampling and MCMC-methods move the proposed particles towards the target distribu-

tion via the bridge distributions by cycling through the following three steps until ϕNϕ = 1:

1. Correction: Compute new importance weights

Wi,n ∝
pn(yi,n−1|µη , Ση/ϕn)

pn−1(yi,n−1|µη , Σ/ϕn−1)

2. Selection: Resample the draws

ỹi,n ∼ MN (yi,n−1|Wi,n)

3. Mutation: Propagate the resampled particles {ỹi}N
i=1 using M steps of an MH-Algorithm

with a transition Kernel

yi,n ∼ Kn(yn|ỹi,n)

that has the stationary distribution pn(yi|µη , Ση/ϕn)

In each iteration, the correction and selection steps adapt the draws {yi,n−1}N
i=1 of the previ-

ous iteration to the nth brigde distribution using an importance sampling step (compare Section

5Note that the density can also depend on additional parameters controlling the shape or Kurtosis which are
dropped in the following exposition for notational convenience.

6In general, other tempering methods are possible. Yet, it has to be satisfied that

pn(yi|µη , Ση) = p(yi|µη , Ση) for ϕNϕ
= 1

and
Var[Wi,n] → 0 for ϕn → 0.

We propose another definition in section 4
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2.1). Once the particles are adapted to pn(yi|µη , Ση/ϕn), the mutation step moves the resampled

particles to a region with a higher probability density using a Metropolis Hastings sampler.
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Example: Tempered Importance Sampling
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Figure 1: Proposal, Target and Bridge Distributions

Figure 1 provides an illustration of this idea in a simple univariate example. The graph

shows Kernel-density estimates of the draws at different stages of the tempered importance

sampling procedure. The draws are proposed from a standard normal distribution (blue solid

line) and adapted to a skew-T distribution with mean 5.16 and positive skewness (red solid

line). Clearly, the probability masses of the two densities are concentrated in different regions

of the real line which renders a standard importance sampler infeasible.7 However, the inter-

mediate bridge distributions (dashed lines) are close to each other by construction and thus

provide a suitable proposal density for the next tempering step. This prevents the importance

weights in each iteration from deteriorating. Additionally, the Metropolis Hastings step insures

that the proposed draws are concentrated in regions with high probability and sequentially mu-

tates the draws towards the target distribution. Since pn(yi|µη , Ση/ϕn) eventually converges to

the target distribution, the particles are gradually adapted to the final distribution. Conver-

gence results and Central Limit Theory similar to simple importance sampling are based on

the work of Chopin (2004) and established in Herbst and Schorfheide (2014).

It is important to note that without the mutation step, the importance sampling procedure

7The Kullback-Leibler Divergence of the two densities is 107.22
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would face the same limitations as entropic tilting or plain vanilla importance sampling. If

there is no empirical support for the draws from the proposal density, the weights of the brige

distributions will deteriorate as there are no draws in the region of space where the target

density has most probability mass. However, including the mutation step moves the particles

and ensures that there are draws in the region of the target densities.

Our algorithm is based on a tempered importance sampler to adapt draws from the model

based distribution Qθ to the target distribution Pη . The ability to mutate the proposed draws

from the model density qθ(yi) towards the target density makes our methodology more robust

then the entropic tilting methodology of Robertson, Tallman, and Whiteman (2005). The next

section introduces our algorithm.

2.3 Our proposed algorithm

Let yi be a vector with dimension L × 1 drawn from Qθ(y) and let ye
i ∈ yi be a vector with

a subset of elements in yi with dimension Le× such that Le < L. Our algorithm proceeds

in to steps: First elements of the vector ye
i are adapted to the target density p(yi|µη , Ση) that

satisfies the imposed restrictions. Second, the corresponding values of the vector y−e
i with

length L−e = L − Le that holds the remaining elements of yi are recovered conditional on the

final values of ye
i . To overcome the problems of weight degeneracy, initial draws are proposed

based on the density q(yi|µθ , Σθ) and subsequently adapted to p(yi|µη , Ση) in a sequence of

tempering iterations. This gives the following algorithm:

1. Draw yi,1 ∼ q(yi|µθ , Σθ) for i = 1, .., N

2. Select the subset ye
i,1 ∈ yi,1 for which there exists external information on the transforma-

tion h(ye
i,1).

(a) Obtain initial importance weights Wi,1 ∝ p1(h(ye
i,1)|µη , Ση/ϕ1)

(b) Resample ye
i,1 ∼ MN (ye

i,1|Wi,1)

3. For n = 2 : NϕN

(a) Correction: Obtain weights Wi,n ∝
pn(h(ye

i,n−1)|µη ,Ση/ϕn)

pn−1(h(ye
i,n−1)|µη ,Ση/ϕn−1)
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(b) Selection: Resample ye
i,n ∼ MN (ye

i,n−1|Wi,n)

(c) Mutation: For j = 1 : H

i. Draw ŷe
i,n ∼ q(ye

i |ye
i,n, µθ , cnΣθ)

ii. Compute

α =
pn(h(ŷe

i,n)|µη , Ση/ϕn)

pn(h(ye
i,n)|µη , Ση/ϕn)

×
∣∣∣∣∣det(Jh−1(ye

i,n))

det(Jh−1(ŷe
i,n))

∣∣∣∣∣ (4)

where Jh−1(y) denotes the Jacobian of the inverse transformation of h(y).

iii. Draw u ∼ U(0, 1).

Iff u < α :

Set ye
i,n = ŷe

i,n

4. Draw the other variables y−e
i from conditional density

y−e
i ∼ q(y−e

i |ye
i,Nϕ

, µθ,−e|e, Σθ,−e|e)

Compared to previous applications of sequential importance sampling applied in the exist-

ing literature, our algorithm has two important extensions. First, since the draws are proposed

based on q(ỹi|µθ , Σθ) but evaluated given the transformation h(y), we need to adjust the ac-

ceptance ratio of the Metropolis Hastings sampler to target the correct posterior density. Using

a change of variables argument yields that the proposal density for the acceptance ratio α is

given by

q(y|µθ , Σθ)× |det(Jh−1(y)|. (5)

This leads to the Jacobian correction in An example of why we need this transformation, which

we will use later in our application, is related to oil prices. Economists have access to option-

based oil price forecasting densities. However, in many applications, the price of oil does not

enter in our models as a level variable. Researchers usually take transformations such as a

natural logarithm, a growth rate or other transformations to stationarize the level of the oil

price.

Plugging in the latter expression for the proposal density leads to the acceptance ratio

given in equation 4. Of course, this implies that our algorithm requires the transformation h(y)

to be bijective and differentiable. However, this holds for many transformations of interest
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such as the ones mentioned before.

Second, since we only seek to include external information for a subset ye
i of the elements

of yi the other variables in the model y−e
i need to be recovered from the mutated particles. We

achieve this by using the conditional distribution q(y−e
i |µθ,−e|e, Σθ,−e|e, ye

i,Nϕ
) to mutate the other

elements of yi conditional on the final particles ye
i,Nϕ

. Note that this is akin to the principle of a

Gibbs sampling step. Hence, for our methodology it is necessary that one can draw from the

conditional density of q(ỹi|µθ , cnΣθ).

Finally, the algorithm can be used with a predetermined tempering schedule such that the

sequence {ϕi}
Nϕ

i=0 is deterministic as in Neal (2001) or Herbst and Schorfheide (2014) but also

with adaptive implementations as for example in Herbst and Schorfheide (2019). The same

holds for the scaling factor cn of the covariance matrix Σθ of the proposal density q that can be

adapted to target a specific acceptance rate of the MH-step in every new iteration.8

2.4 Relationship to entropic tilting

Given the aim of our new methodology as alternative to entropic tilting, this section illustrates

how the tempered importance sampling approach is related to the entropic tilting methodology

of Robertson, Tallman, and Whiteman (2005). The idea of entropic tilting is to reweight draws

from a model-based distribution F(y) to adapt them to a target distribution F′(y). F′(y) is

found by minimizing the following optimization problem

D(F|F′) =
∫

f ′(y)
f ′(y)
f (y)

dy s.t.
∫

f ′(y)g(y)dy = ḡ and
∫

f ′(y)dy = 1 (6)

8For example, following Herbst and Schorfheide (2019), cn can be updated recursively by the following formula

cn = cn−1 f (Ân−1) with f (x) = a + b
ec(x−s̄)

1 + ec(x−Ā)

where Ân−1 is an estimate of the acceptance rate of the MH step in the previous iteration and 0 < Ā < 1 is the
targeted acceptance ratio set be the researcher. The constants a, b and c control the speed of the adjustment and
should satisfy a + 0.5b = 1 and c > 0.
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Hence, the distribution Fθ is the closest density that satisfies a number of constraints ḡ imposed

by the researcher. As shown in the original paper the solution to this problem is given as

f ′(y) = f (y) exp (γ′g(y)) (7)

where γ is the vector of Lagrange multipliers associated with the constraints ḡ imposed under

F′. It’s value is given by

γ = arg
[∫

f (y) exp (γ′g(y))(g(y)− ḡ)
]

(8)

Based on equation (8), it is straight forward to show that this condition is minimized if γ is set

such that

exp (γ′g(y)) =
f ′(y)
f (y)

(9)

This implies that draws from Fϑ are resampled using the importance weights W(y). Given

that the minimization procedure in equation 8 finds the optimal solution, the target density of

entropic tilting and importance sampling coincide.

While entropic tilting imposes constraints on the moments of the target density without an

assumption about the parametric form of the target density, our methodology imposes these

restrictions via the choice of a specific parametric density. In case only few restrictions are

placed on the target density, the resulting density of entropic tilting might differ from the den-

sity that is imposed in our proposed method. However, as the number of restrictions on the

moments of the target density increases, the space of density functions that satisfy these re-

strictions shrinks and the density of entropic tilting will be equal to the imposed density of our

importance sampling method.

As outlined before, while our methodology requires an additional assumption, it allows to

move the particles in the mutation step of the tempered importance sampling procedure. This

enables a more robust and versatile method to include external information into the forecast

densities or perform scenario analysis based on counterfactuals.
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3 Application: The transmission of oil-price risks to inflation

To showcase how our algorithm functions, we use our methodology to condition the density

forecast of a small euro area BVAR model and a large DSGE model on option-implied densities

of oil price futures. The idea is to introduce oil price forecasting densities based on market data,

which might not be symmetric, into the different models and to explore how that additional

information tilts the forecasting distribution of variables such as inflation and real GDP.

Our application also contributes to the macro-at-risk literature that started with the sem-

inal paper of Adrian, Boyarchenko, and Giannone (2019) and has spawned an active field of

research to model and evaluate asymmetric risks of macroeconomic variables such as GDP or

inflation. Recent contributions from Wolf (2022) or Delle Monache, De Polis, and Petrella (2021)

propose different univariate modelling approaches to model time-varying asymmetries of the

forecasting densities of macroeconomic variables using a skewed distribution of the shocks

whose moments are time-varying based on auto-regressive components and exogenous vari-

ables. Furthermore, the work of Montes-Galdón and Ortega (2022) extends this approach to

Bayesian VAR models exploiting a specific representation of the skewed Normal distribution

by Azzalini (2013) for the structural shocks of the model. While the aforementioned papers seek

to capture the evolution of risks based on some latent state variables, the application in this pa-

per aims to directly introduce off-model information about the full9 marginal distribution of

some variables in the models and analyse the effect on other marginals based on correlations

captured by the model. That is, we explore how possibly asymmetric risks in one variable

translate to risks in other variables.

Based on the results of Breeden and Litzenberger (1978), it is possible to infer probabilities

about the value of an underlying asset at the date of expiry from derivative prices observed

in the market. The resulting probabilities can then be used to construct the full probability

density of the underlying variable at the expiration date (see for example Vincent-Humphreys

and Puigvert Gutiérrez (2010)). Option-implied probability densities are derived for different

objects such as exchange rates, interest rates or oil prices, and are regularly published by the

European Central Bank, the Bank of England or the Federal Reserve.

9In the sense of using information beyond the second moment
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Figure 2: Option-implied moments of future Oil-Price densities

Figure 2 shows the first three moments of the option implied probability density functions

of oil prices using quarterly data from 2008 to 2022 for different forecast horizons obtained from

the ECB’s Statistical Data Warehouse. Most notably, the probability density of the future oil

price exhibits large fluctuations in the evolution of skewness for all horizons over the full sam-

ple. Remarkably, in 2022, with the beginning of the Russian invasion of Ukraine, market-based

data shows that agents expected significant asymmetric upside risks to the price of oil. We

first need to find a distribution that can explain those fluctuations and which will be the target

distribution Pη(ye
i ) in our methodology as defined in the previous section. Following the re-

cent literature on skewed densities spawned by Adrian, Boyarchenko, and Giannone (2019) we

model the marginal forecasting densities of the price of oil at any time period and at different
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horizons as a multivariate Skew-T distribution as introduced by Azzalini and Capitanio (2003).

We outline further details of the density function of the multivariate Skew-T distribution and

our fitting procedure in the next section.

3.1 Properties of the Multivariate Skew-T Distribution

A random vector y ∈ Rp, follows a a multivariate Skew-T

y ∼ MST (y|ξ, Ω, λ, ν)

where ξ ∈ Rp determines the location, Ω is a p × p Covariance matrix, λ ∈ Rp is the shape

parameter and ν ∈ N gives the degrees of freedom. Based on the construction of skewed

densities established in Azzalini (2013), the corresponding density function is given by

τ(y|ξ, Ω, λ, ν) = 2tp(y|ξ, Ω, ν)T1

{
λ′z ×

(
ν + p

ν + Q(z)

)1/2∣∣∣ν + p

}
(10)

with z = ω(y − ξ), Q(z) = z′Ω̄−1z, correlation matrix Ω̄ = ω−1Ωω−1 and

tp(y|ξ, Ω, ν) =
Γ((ν + p)/2)

|Ω|1/2(νπ)p/2Γ(ν/2)

(
1 +

Q(z)
ν

)−(ν+p)/2

(11)

As shown in Proposition 3 in Arellano-Valle and Genton (2010) the multivariate skew-T distri-

bution is closed under marginalization. For a partition y = (y1, y2), with dimensions p1 and p2

and parameters (ξ, Ω, λ), the marginal distributions of yi with i = 1, 2 are given by

yi ∼ MST i(ξi, Ωii, λi(j), ν) (12)

with

λi(j) =
λi + Ω̄−1

ii Ω̄ijλj√
1 + λ′

jΩ̃ii|jλj

and Ω̃ii|j = Ω̄jj − Ω̄jiΩ̄−1
ii Ω̄ij (13)

Expression (13) shows that the shape parameter of the marginal distribution is a weighted sum

of all elements of the vector of individual shape parameters λ, with weights depending on

the correlation between yi and yj. Thus, λi = 0 does generally not imply that the marginal
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distribution of yi is symmetric.10 Figure 3 illustrates this in a simple two-dimensional example

with ξi = 0 and ωi = 1 for i = {1, 2} and a correlation coefficient of ρ = 0.8. The shape

parameters are given as λ1 = −2 and λ2 = 0. Based on equation 13, the values for the shape

parameters of the marginal distributions are then given by

λi(j) =
λi + ρλj√

1 + λ2
j (1 − ρ2)

(14)

which yields λ1(2) = −2 and λ2(1) = −1.024. Thus, the positive correlation between y1 and

y2 introduces negative skewness in both marginal distributions. From expression (14) it is also

clear that a negative correlation of y1 and y2 has an offsetting effect on the marginal shape pa-

rameter such that the marginal distributions are skewed in opposite directions. We use exactly
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Figure 3: Bivariate Skew-T Density with Marginal Densities

this property of the multivariate skew-T distribution to analyse the effects of tail-risks in the

marginal forecast densities of oil-prices on other macroeconomic variables.

We use our algorithm to introduce information about the shape of the distribution of the

oil price and analyze how this will affect risks to other macroeconomics variables such as GDP

or measures of inflation. Depending on the correlations between the variables, tilting the distri-

bution of the oil prices based on the option-implied moments will result in asymmetric density

forecasts for other variables than the oil price.

10As shown in Arellano-Valle and Genton (2010) a necessary and sufficient condition for λi(j) = 0 is that λi =

−Ω̄−1
ii Ω̄jiλj.
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3.2 Fitting a skew-T distribution to oil price forecasts

To fit the multivariate Skew-T distribution to the option implied moments, we obtain external

information on the mean µoil
i , standard deviation σoil

i and skewness γoil
i of the marginal forecast

densities from derivatives on the Price of Brent Crude Oil for forecast horizons from i = 1 up

to i = 6 quarters.11 From Proposition 3 in Arellano-Valle and Genton (2010), it follows that the

marginal forecast densities of the oil price for each quarter are univariate skew-T distributions.

Thus, we can use the results from Azzalini and Capitanio (2003) to obtain the parameters of the

marginal skew T-densities. We match the option implied moments to the theoretical moments

of the skew-T distribution by solving the following equations

γoil
i = κi(j)

ν
(

3 − δ2
i(j)

)
ν − 3

− 3ν

ν − 2
+ 2κ2

i(j)

 [
ν

ν − 2
− κ2

i(j)

]
(15)

κi(j) =

√
vΓ

( 1
2 (ν − 1)

)
√

πΓ
( 1

2 ν
) δi(j) (16)

λi(j) =
δi(j)√

1 − δ2
i(j)

(17)

σoil
i = ωi

√[
ν

ν − 2
− κ2

i(j)

]
(18)

µoil
i = ξi + ωiκi(j) (19)

with respect to the parameters ξi, ωi, λi(j) for i = 1, ..., 6. To provide a maximum amount of

flexibility for the PDF we set ν = 5.12 After obtaining the shape parameters of each marginal

density λi(j) we obtain the shape parameters of the joint distribution in a second step using

expression 13. We obtain an estimate of the correlation matrix based on the draws from our

model. Subsequently, we jointly solve for each λi which is given as

λi = λi(−i)

√
1 + λ′

−iΩ̃ii|−iλ−i − Ω̄−1
ii Ω̄′

−iiλ−i (20)

11Since options are only traded for horizons 1,...,4 and 6 quarters ahead, we interpolate the values for the 5 quarter
using a cubic spline.

12Based on the results in Azzalini and Capitanio (2003) page 17, this is the smallest value of ν for which the first 4
moments of the multivariate Skew-T are defined.

ECB Working Paper Series No 2754 / December 2022 21



Hence, while we allow for changes in the mean, standard deviation and skewness of the tar-

get distribution we assume that the model-based correlation between the different forecasting

horizons does not change with regards to the target distributions. Once we have obtained the

fitted parameter vectors ξ̂, Ω̂ = ω̂−1Ω̄ω̂−1 and λ̂ as solutions to equations (15) - (20), we can

specify the target density of our algorithm as

pη(yoil
i ) = τ(yoil |ξ̂, Ω̂, λ̂, ν) (21)

3.3 Introducing market-based densities information in a BVAR model

Once we have the target density obtained using the methodology in the previous section for the

price of oil, we need to incorporate it into model-based forecasts to infer how other variables

are impacted. In our example, we obtain qθ(y) from the forecasting density of a reduced form

BVAR model

yt = ζ + A1yt−1 + ... + Asyt−s + ut with ut ∼ N (0, Σu) (22)

As the endogenous variables of the model, we include the log of the price of oil, the log of

real GDP, the log of prices including and excluding energy as well as the log of the US/Dollar

exchange rate, log of employment and the long and short term interest rates.

We estimate the BVAR model using Bayesian methods, under a Minnesota prior. To find

the optimal hyperparameters of the prior, we use the hierarchical approach of Giannone, Lenza,

and Primiceri (2015) that is based on maximizing the marginal data density of the BVAR model

with respect to those hyperparameters. Since we estimate the model using Bayesian methods

we obtain sets with I posterior draws for both the intercept ζi and the slope coefficients Aj,i, j =

1, .., 5 as well as the elements of Σi. Additionally, we use the novel methodology of Lenza

and Primiceri (2020) to deal with the Covid period in the first quarters of 2020. We sample

with replacement from the posterior draws to generate the model consistent forecasts up to h

periods, yi = [y′i,t, y′i,t+1, ..., y′i,t+h]
′. Thus, we also incorporate parameter uncertainty from the

posterior densities into our risk analysis. The density of the proposal distribution for the ith
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draw yi is then given by the multivariate forecasting distribution of the model and takes the

form

qθ(yi) = φ(y|µi, Σi) (23)

where φ(...) denotes the density function of the multivariate normal distribution with mean µi

and Variance Covariance Matrix Σi. More details on how to obtain this forecasting density are

provided in the Appendix.

3.4 Adjusting the forecast densities

Once we have obtained the parameters for the multivariate Skew-T distribution, we use the

algorithm described in Section 2.3 to adjust the marginal forecast densities of oil prices from

the BVAR to the the option implied forecast densities. Based on 25000 draws for µ and Σ from

the BVAR we generate 50000 model consistent forecasts yi. For our algorithm, we use the the

adaptive tempering schedule of Herbst and Schorfheide (2019) to obtain the optimal values for

Nϕ and ϕn. In each iteration, we optimize ϕn such that the inefficiency ratio is equal to a target

ratio r∗ > 1

ϕn = argmin
1
M

M

∑
i

[
Wi,n

1
M ∑M

i=1 Wi,n

]2

− r∗ (24)

with Wi,n given as in Section 2.3 Step 3 (a). Setting r∗ closer to 1 results in a better approximation

of pη(yoil) but also increases the number of tempering steps. To obtain a precise approximation

of the target density we set r∗ = 1.01. For the mutation of the particles in Step 3 (c) we set

H = 10. Given this set-up, we first use our method to investigate the effect of the strong

increase in oil prices on inflation due to the begin of the war in Ukraine in the first quarter of

2022. Subsequently, we evaluate the gains of introducing external information from options

into forecasting densities in a real-time forecasting exercise.

3.5 Results from the BVAR

As can be seen from figure 2, option-implied moments of the forecasting distribution of the oil

price have sharply increased over the first two quarters in 2022, with option implied skewness

peaking in the last quarter. We estimate the BVAR model using data up to the first quarter of
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2022 and introduce the information of the option-implied densities at the 4th of March. The

option-implied moments for all forecasting horizons h at that point are displayed in Table 1.

Since there are no options with an expiry date of 15 months traded the missing values for the 5

month-ahead forecasting densities are interpolated using a cubic spline.

h Mean SD Skewness
1 110.2 38.88 1.8
2 103.16 40.64 1.56
3 98.92 40.59 1.28
4 95.3 41.1 1.14
5 92.13 41.88 1.09
6 89.75 41.99 1.01

Table 1: Option-implied moments

While the mean of the distribution is monotonically decreasing by approximately 20 eu-

ros per barrel over the forecasting horizon, uncertainty (standard deviation) is increasing from

38.88 to 41.99 at the same time. Additionally, the distribution is significantly skewed to the

right with values larger than 1 for all horizons indicating increased upside risks to the price of

oil. Yet, the skewness is also decreasing over time, which indicates that risks become more sym-

metric over time. Based on the properties of the Skew-T distribution described in 3.1, we use

our algorithm to introduce the information about the forecasting densities of oil to our model

to investigate if and how the forecasting distributions of inflation are affected. By introduc-

ing information about the full density, we can gauge the effects on the point forecasts as well

as the effect that market-based oil upside risks have on other model variables. The skewness

implied by the densities of the oil price will affect the distributions of other model variables

depending on the correlations implied by the BVAR. Given the debate about the pass-through

of high energy prices to inflation, we are particularly interested in the effect on both, inflation

with and without energy prices. Figure 4 shows the fitted marginal skew T-densities that we

obtain from the values in Table 1 together with the histogram of the final particles {yOil
i,Nϕ

}N
i=1

with N = 50000. Based on our targeted inefficiency ratio r∗ = 1.01, the algorithm required a

number of Nϕ = 40 tempering steps to move the original particles form the proposal distribu-

tion to the target distribution. The draws are very well adapted to the target distribution that

is implied by the options and provide a precise approximation. The positive skewness and in-

creasing volatility is clearly visible from the theoretical distribution as well as from the adapted
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Figure 4: Option-implied probability density functions

draws.

Figure 5 shows the resulting densities for inflation and core inflation. The shaded areas show

the 16, 25, 75 and 84 percent quantiles of resulting forecasting distribution of the annualized in-

flation rate together with the median given by the solid black line. Additionally, the dotted red

lines show the 16 and 84 percent quantiles of the original distribution. Figure 8 in the Appendix

also shows the histograms of the annualized growth rates of the oil-price, inflation and core in-

flation for all forecasting horizons. In both cases, introducing the information of the options

results in an upward shift of the full distributions. In case of inflation, the new median nearly

coincides with the original 84 percent quantile of the original distribution in the first two peri-

ods. The forecasting density of core inflation is similar to the original model in the first period

but subsequently deviates from the original model with significantly higher values over the

rest of the forecasting horizon. Additionally, the positive skewness in the distribution of the oil

prices results in upside risks to inflation as can be seen from the quantiles and the histograms

in Figure 8. Hence, while headline inflation (i.e. including energy prices) reacts contempora-
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Figure 5: Option-implied forecasting densities

neously, the effects on core inflation appear one quarter later, reflecting second round effects

arising from the upside risks in the distribution of the price of oil. Finally, the median forecast

for core inflation remains persistently elevated over the forecasting horizon compared to the

original forecast from the BVAR.

3.6 Forecasting GDP and Inflation

To evaluate the effect of conditioning on information about the market-based forecasting distri-

bution of our BVAR model, we look at the probabilistic forecasting performance in a real time

forecasting exercise to forecast GDP, inflation and core inflation. We estimate the same BVAR

as in section 3.3 using data vintages starting in the last quarter of 2013 up until the third quarter

of 2021. With the onset of the Covid pandemic we again use the method of Lenza and Prim-

iceri (2020). Subsequently, we use our algorithm to impose the option-implied distribution at

the end of the quarter to the forecasting density of the oil-price. Since our methodology seeks to

incorporate information about the full distribution, we use the continuous ranked probability

score (CRPS) as the metric to evaluate the density forecasts. The CRPS generalizes the Mean

Squared Error to take into account the the full forecasting distribution. It can be formalised as,

CRPS(F, x) =
∫ ∞

−∞
(F(y)− 1(y − x))2 dy (25)
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where x is the realized value, F is the cumulative distribution function implied by the density

forecast of the model and 1(...) denotes the heavyside function. Figure 6 shows the ratios of the
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Figure 6: Continuously Ranked Probability Scores

mean CRPS for the symmetric density forecasts under Qθ and the skew-T forecasts under Pη

Rt =
1
P ∑P

i=1 CRPS(Qθ , xk
t+i)

1
P ∑P

i=1 CRPS(Pη , xk
t+i)

(26)

for k = GDP, inflation, core inflation. The tables with values for each period are included in the

Appendix. The results indicate that while including additional information on the distribution

from the options does not increase predictive accuracy in moderate periods with stable eco-

nomic conditions, it strongly increases the probabilistic forecasts accuracy in times of economic

turmoil during the onset of the Covid pandemic in the first and second quarter of 2020. This

is in line with other findings on skewed density forecasts such as Adrian, Boyarchenko, and

Giannone (2019) who show that conditional forecast densities of macroeconomic variables are

symmetric in normal times but become skewed in times of crisis.
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3.7 Tilting the forecast densities from a DSGE model

Finally, we show that our methodology can also be applied in large models, such as a DSGE.

Note that the reduced form solution of a DSGE model can be written as,

xt = J + Qxt−1 + Gεt (27)

where xt is a vector of endogenous and exogenous state variables in the model, and εt is a

vector of i.i.d. structural shocks. Yet, note that in general the number of structural shocks in a

DSGE model is smaller than the vector of state variables. Usually, for the estimation of a DSGE,

there is a subset of variables that are observed, yt, so that,

yt = Hxt (28)

where H is a selection matrix. With these two equations in hand, we show in the Appendix

how to construct the proposal density qθ(y) as in the case for the BVAR.

We then repeat the analysis in section 3.5 using the ECB’s New Area Wide Model II

(NAWM II) from Coenen et al. (2018). The NAWM II is an estimated dynamic, stochastic,

general equilibrium (DSGE) model of the euro area as a whole. The model incorporates a rich

financial sector that allows for (i) accounting for a genuine role of financial frictions in the prop-

agation of economic shocks as well as macroeconomic policies and for the presence of shocks

originating in the financial sector itself, (ii) capturing the prominent role of bank lending rates

and the gradual interest-rate pass-through in the transmission of monetary policy in the euro

area, and (iii) providing a structural framework useable for assessing the macroeconomic im-

pact of the ECB’s large-scale asset purchases conducted in recent years. For the exercise in this

section, we slightly modify the model to account for a faster pass-through of oil prices to in-

flation. In the original version of the model, there is one foreign intermediate-good firm that

sells its goods in the domestic euro area market. The marginal costs of this firm is a weighted

average of oil prices and foreign prices. Then, the firm is subject to staggered price contracts à

la Calvo when setting the final domestic price, which introduces a sluggish price adjustment.
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For this analysis, we separate the problem into two firms. One that sets domestic prices for

imported oil, and the second one that only takes care of foreign prices. The firm that sets oil

prices has a smaller Calvo parameter, reflecting a faster pass-through of oil prices into final

import prices, and thus, into the private consumption deflator and HICP in the model.

Figure 7 shows the results of introducing market based data on oil prices in the forecasting

distribution of the NAWM II. In the figure, the blak lines show the model-based forecast, while

the blue shaded areas represent the tilted distributions so that the distribution of the price of

oil matches the market-based measures. In the model, the price of oil behaves as a supply

side shock. Thus, once we incorporate information from the markets that assumes that the

distribution of the price of oil is skewed to the upside, the transmission channel in the model

indicates significant downside risks to the real economy, which in the figure is represented

by annual GDP growth, and upside risks to inflation, represented by inflation in the private

consumption deflator. The figure also shows that the final distributions are skewed, and the

asymmetries are inherited from the skewness in the market-based options.

Figure 7: Option-implied forecasting densities in the NAWM II

4 Extensions

This section proposes several extensions of our core algorithm that make our methodology

applicable in case some of the assumptions for the algorithm in section 2 are not satisfied. As

described in section 2.3, our methodology requires knowledge of the conditional distribution of

the proposal distribution to recover the values of the variables y−e. Second, we use a tempering
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method that requires a target density with a parameter to control the scale of the distribution.

In this section we propose two remedies in case the application at hand does not meet these

requirements.

First, if the conditional distribution is not available, but the researcher has access to draws

from any arbitrary distribution, it is possible to approximate the proposal density q(x) with a

Gaussian mixture density of the form

q(x) =
K

∑
k=1

πk φ(x|µk, Σk). (29)

with weights 0 < πk < 1 that satisfy ∑K
k=1 πk = 1. The Gaussian mixture density then has the

conditional density

q(x1|x2) =
K

∑
k=1

[
πk φ(x2|µk,2, Σk,22)

∑L
l=1 πl φ(x2|µl,2, Σl,22)

]
φ(x1|x2, µk,1|2, Σk,1|2) (30)

that can be used to sample from in step 4.

With regards to the second point, we propose another way to define the bridge distribu-

tions as given in Neal (2001)

pn(yi) = pη(yi)
ϕn qθ(yi)

(1−ϕn) (31)

In this specification, the bridge distributions are given by the geometric average of the model-

implied density and the target density. Gradually increasing ϕ from 0 towards 1 will sequen-

tially adapt the particles proposed by the model to the final distribution.13 Expression 31 pro-

vides an attractive alternative if the scale of the distribution is not captured by a specific pa-

rameter. It is also possible to implement an adaptive tempering schedule instead of working

with a predetermined sequence for {ϕn}
Nϕ

n=1. With these remedies in hand, we consider our

methodology applicable to a wide variety of problems.

13In our application, we experimented with both specifications and found that in both cases, our algorithm is able
to adapt draws to the target distributions even if the Kullback-Leibler divergence is high.
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5 Conclusion

In this paper, we develop a methodology that can be used to condition probabilistic forecasts

of a model on off-model information about the marginal distributions of some of the model

variables. More technically, the algorithm uses the tempered importance sampling method

of Neal (2001) and Herbst and Schorfheide (2014) to adapt draws from a model-based distri-

bution to a target distribution that satisfies the external information one intends to condition

the forecast on. Our algorithm allows applications where the proposed draws are far away

from the target density in a Kullback-Leibler sense as well as conditioning on information on

transformations of the model variables. This makes our method superior to the entropic tilting

methodology of Robertson, Tallman, and Whiteman (2005) whose method is similar in spirit

but less robust and less flexible.

We illustrate our algorithm by introducing off-model information about the distribution

of future oil prices into the forecasting densities of a BVAR. The information is obtained from

option prices and indicates significant amounts of skewness at all available forecasting hori-

zons. Using the results of Azzalini and Capitanio (2003) we model the option-implied marginal

forecasting densities as skew T and apply our methodology to investigate the transmission of

upside risks to future oil prices on future inflation and core inflation in the first quarter of 2022.

Due to the war in Ukraine, option-implied forecasting distributions of oil prices exhibit large

positive skewness and increased volatility over the full forecasting horizon. We find that adapt-

ing the forecasting distributions of the BVAR to the option-implied densities results in upside

risks to inflation and core inflation. Furthermore, median forecasts of core inflation remain per-

sistently higher over the forecasting horizon compared to the symmetric forecast densities of

the BVAR. We also investigate the forecasting accuracy of the density forecasts in real time. We

focus on the probabilistic forecasts of GDP, inflation and core inflation over the period of 2013

Q4 up to 2021 Q4. Based on the CRPS, our results indicate that introducing information about

the marginal distribution of oil prices improves forecasts for GDP and inflation measures dur-

ing the Covid pandemic compared to symmetric forecasting distributions. This is in line with

results of Adrian, Boyarchenko, and Giannone (2019) who find skewness on conditional fore-

casting densities in times of economic turmoil.
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Our methodology as well as our application is widely applicable and provides several

extensions for further research such as introducing information from traded derivatives with

other underlyings such as interest rates or exchange rates. Additionally, the model implied

forecasting densities are not limited to time-series models such as BVARs but can also be ap-

plied to forecasting distributions of DSGE models or semi-structural models.
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A Appendix

A.1 Deriving the Proposal Density in a VAR model

Rewriting the VAR-Model as a VAR(1) gives

yt = ci + Φiyt−1 + Giεt (32)

where Φi is the companion matrix of the ith posterior draw for the slope coefficients and ci the

corresponding vector of intercepts. Gi is a lower-triangular matrix such that GiG′
i = Σu,i and

εt ∼ N (ε|0, I). Iterating the equation forward in time gives for the h step ahead forecast

yT+h =
h

∑
j=1

Φj−1
i ci + Φh

i yT +
h

∑
j=1

Φh−j
i GiεT+j (33)

Stacking the realizations over the full forecasting horizon in a vector yi yields


yT+1

yT+2
...

yT+h

 =


c̃i,T+1

c̃i,T+2
...

c̃i,T+h

+


Gi 0 0 0

ΦiGi Gi 0 0
...

...
. . . 0

Φh−1
i Gi Φh−2

i Gi · · · Gi




εT+1

εT+2
...

εT+h


with c̃i,T+h = ∑h

j=1 Φj−1
i ci + Φh

i yT. Redefining the terms results in the simple expression

yi = µi + Giε (34)

where µ = [c̃i,T+1, ..., c̃i,T+h]
′. The matrix Gi is a lower-triangular matrix that captures the cor-

relations of the reduced form errors ut = Gεt between the model variables as well as between

the different time periods. These correlations depend on the values of the posterior draws for

Φi and Σu,i. Given the distributional assumption about ε it follows that

yi ∼ N (y|µi, Σi) (35)

with Σi = GiG ′
i . This gives the proposal density in equation 23.
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A.2 Deriving the Proposal Density in a DSGE model

A similar reasoning as in the VAR model can be applied in the case of a DSGE model. The

reduced form representation of a linearised DSGE model takes the form,

xt = J + Qxt−1 + Gεt (36)

where xt is a N × 1 vector of endogenous and exogenous variables in the model, and εt

is a P × 1 vector of i.i.d. structural shocks. Yet, note that in general N > P. This implies that

Σ = GG′ is a reduced rank matrix and thus not invertible. This implies that we cannot proceed

exactly as in the case of the VAR model, and as the proposal density in equation 35 cannot be

evaluated. However, as in the case of the estimation of a DSGE model, we can focus on a subset

of variables in xt which are assumed to be observed. If H is a matrix that selects some variables

(or a combination of them), then we can write,

yt = Hxt = HJ + HQxt−1 + HGεt = J̃ + Q̃xt−1 + Q̃εt (37)

where we assume that the dimension of yt is P × 1. That is, the number of observed vari-

ables is equal to the number of fundamental shocks in the model. Then, given an initial con-

dition for all the variables in the model, xT, which could be recovered running a Kalman filter

for example, we can proceed similarly as in the case of the VAR. Iterating forward, we can get,

yT+h =
h

∑
j=1

Q̃j−1 J̃ + Q̃hxT +
h

∑
j=1

Q̃h−jG̃εT+j (38)

And with the latter expression in hand, it is straightforward to compute an expresion for

the mean and the covariance matrix in 35 using the same matrix representation as in the VAR

case.
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A.3 Additional Plots

Figure 8: Forecasting densities of annual growth rates
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T h=1 h=2 h=3 h=4 h=5 h=6
14Q1 1.233 1.032 0.979 0.851 1.253 0.917
14Q2 1.258 1.065 0.993 1.601 1.045 1.017
14Q3 1.019 1.066 1.129 1.102 1.044 1.017
14Q4 1.023 1.089 0.985 1.252 1.265 1.219
15Q1 1.227 1.032 0.948 1.121 1.179 1.048
15Q2 1.005 1.039 0.991 1.258 1.013 1.144
15Q3 0.952 0.936 1.234 1.086 1.206 1.118
15Q4 1.053 1.066 1.015 1.124 1.148 1.101
16Q1 1.159 0.979 1.093 1.039 1.069 1.079
16Q2 1.308 1.159 1.089 1.287 1.274 1.185
16Q3 1.125 1.032 1.053 1.190 1.231 1.102
16Q4 0.794 0.874 0.954 1.291 1.173 1.046
17Q1 0.859 0.939 1.033 1.231 0.946 1.125
17Q2 1.064 1.124 1.125 0.962 1.184 0.982
17Q3 1.019 1.068 0.901 1.159 0.888 1.171
17Q4 0.880 1.004 1.108 0.676 1.358 1.210
18Q1 1.133 1.067 0.885 1.504 1.387 0.962
18Q2 1.134 0.982 1.207 1.573 0.863 0.942
18Q3 1.091 1.034 1.153 1.041 0.984 0.893
18Q4 0.851 0.970 1.034 1.033 0.838 0.968
19Q1 0.924 1.101 1.030 0.848 0.963 0.991
19Q2 1.135 1.042 0.922 0.946 0.987 1.004
19Q3 1.028 0.919 0.968 0.987 1.007 0.865
19Q4 1.041 0.985 0.994 1.005 0.904 0.927
20Q1 0.997 0.996 1.004 0.790 0.847 1.014
20Q2 1.001 0.974 0.637 0.861 0.846 0.878
20Q3 0.835 0.439 0.271 0.296 0.214 0.146
20Q4 0.729 0.927 0.748 1.122 0.967 1.057
21Q1 0.696 1.014 1.012 1.089 1.091 1.006
21Q2 0.742 1.086 1.181 1.112 1.177 1.084
21Q3 0.661 1.199 1.067 1.117 1.242 1.080
21Q4 0.566 1.099 1.156 1.085 1.298 1.218

Table 2: Ratios of CRPS for GDP
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T h=1 h=2 h=3 h=4 h=5 h=6
14Q1 1.652 1.269 1.048 1.071 0.888 1.322
14Q2 2.008 1.310 0.908 0.999 1.220 0.776
14Q3 2.923 1.201 0.974 0.966 0.874 0.8
14Q4 1.463 1.077 1.163 0.937 0.829 0.79
15Q1 0.935 1.298 0.866 0.893 0.761 1.395
15Q2 0.692 1.014 0.919 0.928 1.125 1.01
15Q3 0.982 0.913 0.871 0.970 0.899 1.152
15Q4 1.454 0.919 1.171 1.201 1.174 1.075
16Q1 0.794 1.282 1.211 1.250 1.178 0.936
16Q2 0.470 0.997 0.856 0.788 1.178 1.175
16Q3 1.551 0.813 0.939 1.035 1.163 1.151
16Q4 0.466 0.736 1.142 1.332 0.980 1.032
17Q1 0.589 1.150 1.063 1.169 1.151 1.166
17Q2 0.967 0.938 1.121 1.163 1.215 1.247
17Q3 1.354 1.186 1.123 1.105 1.217 1.065
17Q4 0.887 0.941 1.079 1.121 1.056 0.831
18Q1 0.946 0.862 1.148 1.083 0.850 1.309
18Q2 0.578 1.015 0.983 0.950 1.234 0.855
18Q3 1.550 1.191 0.922 1.163 0.926 0.875
18Q4 2.096 1.087 1.113 1.116 1.007 0.881
19Q1 1.238 0.960 1.168 1.260 1.017 0.875
19Q2 0.529 1.250 1.163 1.030 0.883 0.862
19Q3 1.168 1.132 0.851 0.877 0.838 0.783
19Q4 1.264 0.910 0.910 1.004 0.885 1.046
20Q1 1.313 0.978 0.912 0.960 1.016 1.253
20Q2 0.726 1.319 0.904 0.836 0.665 0.777
20Q3 0.188 0.237 0.518 0.321 0.395 0.433
20Q4 1.72 0.897 0.688 0.829 0.861 0.883
21Q1 0.666 0.667 0.899 0.887 0.915 0.844
21Q2 1.01 0.815 1 0.93 0.988 1.135
21Q3 0.635 0.872 0.917 0.827 0.941 1.168
21Q4 0.591 0.848 1.019 1.213 1.041 0.897

Table 3: Ratios of CRPS for Inflation
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T h=1 h=2 h=3 h=4 h=5 h=6
14Q1 0.928 0.93 1.061 1.217 1.26 1.333
14Q2 0.996 1.003 1.063 1.215 1.345 1.314
14Q3 0.926 0.984 1.009 1.277 1.306 1.426
14Q4 1.033 0.941 0.994 0.987 1.301 1.16
15Q1 1.022 1.096 0.988 1.145 1.077 1.029
15Q2 1.017 1.067 1.034 0.938 0.871 1.041
15Q3 1.001 1.013 0.94 0.869 1.055 1.096
15Q4 1.025 1.044 0.947 0.941 1.104 1.065
16Q1 1.003 0.885 0.986 1.054 1.055 1.033
16Q2 1.068 1.207 1.052 0.969 1.146 1.162
16Q3 1.033 1.073 1.062 1.104 1.159 0.923
16Q4 0.925 1.004 0.96 1.125 0.933 1.175
17Q1 1.003 0.91 1.003 0.949 1.128 1.133
17Q2 0.952 0.951 0.914 1.105 1.107 1.081
17Q3 0.991 0.987 1.051 1.079 1.058 0.928
17Q4 1.028 1.062 1.052 1.105 0.817 0.898
18Q1 1 0.983 1.049 0.834 0.922 1.175
18Q2 1.079 1.072 0.964 0.862 1.205 1.258
18Q3 1.011 1.055 0.962 1.148 1.239 1.192
18Q4 1.063 1.148 0.972 1.167 1.165 0.845
19Q1 1.054 0.944 1.025 1.054 0.876 1.166
19Q2 0.937 0.997 0.991 0.873 1.037 0.847
19Q3 1.02 1.051 0.926 1.167 0.895 0.903
19Q4 0.984 1.011 1.077 0.96 0.925 1.021
20Q1 0.986 1.013 0.933 0.89 1.041 1.008
20Q2 0.992 0.924 0.71 0.868 0.705 0.897
20Q3 0.829 0.633 0.563 0.384 0.357 0.248
20Q4 0.632 0.983 0.797 0.989 0.92 0.965
21Q1 0.837 1.006 0.927 0.986 1.033 1.062
21Q2 1.249 0.922 1.057 1.013 1.123 1.055
21Q3 0.72 0.893 0.943 0.98 1.086 1.157
21Q4 0.593 0.871 1.094 0.966 1.203 1.253

Table 4: Ratios of CRPS for Core Inflation
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