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Abstract

In this article, we present a new perspective on forecasting technology adoption, focused on

the extensive margin of adoption of multiple digital technologies in multiple countries. We

do this by applying a Bayesian hierarchical structure to the seminal model of technology

diffusion. After motivating the new perspective and the choices of priors, we apply the

resulting framework to a cross-continental data set for EU and OECD countries and different

digital technologies adopted by either households/individuals or by businesses. The results

illustrate that the Bayesian hierarchical structure may be used to assess and predict both

the adoption process and the uncertainty surrounding the data, and is robust to the use

of alternative priors. They point to heterogeneity across countries and across technologies,

mostly in the timing of adoption and, although to a lesser extent, the steady-state adoption

rate once technologies are fully diffused. This suggests that characteristics of countries and

technologies matter for technology diffusion.

Keywords: Adoption, Diffusion, Timing, Speed, Maximum

JEL codes: C11, C52, C53, O33, O57
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Non-Technical Summary

Technology in general and digital technology in particular, is an important component of every-

day lives, and therefore important also from a policy perspective. Robots and automation have

changed how products are being made, and the internet of things electronically connects appli-

ances. Computers and mobiles have changed what people consume and how they communicate,

and the internet serves as a source of information, a medium of exchange, and as an enabler for

many types of transactions.

In this context, a key concern is the ability to understand what is or what will be the bundle

of technologies available. In relation to households/individuals, the question is whether and

when they are going to have access to enabling technologies, as for the example email and the

internet, and the technologies building on those, such as social networks. As regards businesses,

the same question arises regarding broadband, enterprise resource planning, e-commerce and

customer relationship management, among others.

The specific technology being considered is one factor determining the process of technology

diffusion. The literature has also considered a number of other factors, such as, most recently,

the influence of institutions and governance. If institutions and governance are of high quality,

it may be easier to adopt digital technology, for example to get access to the internet, or use

search engines, or to use a mobile phone, or a robot. Given that institutions and governance are

specific to countries, the process of technology diffusion is also going to be specific to specific

countries.

This paper approaches modelling and estimating the process of technology diffusion from a

new perspective, taking into account both technology-specific and country-specific factors. That

new perspective is Bayesian, and its essence is that the parameters of the model are estimated

starting from priors which are then contrasted to the data. In this paper, the priors relate to

the timing of adoption, the speed of adoption, and the ultimate level of adoption, which all are

a function of both technology and country.

The idea is applied to data for a set of 30 countries which are members of European Union or

OECD, and 14 digital technologies, 9 that are particularly pertinent for households/individuals

and 5 that are better thought of as related to businesses, for the period 2005-2020. The results

suggest that several technologies have yet to diffuse fully, especially those related to businesses,

perhaps because those tend to be more complex. There is evidence also that the timing of
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adoption and, to some extent, the ultimate rate of adoption tend to differ across countries. There

is evidence also that later adoption does not mean faster adoption, at least not in connection

with technologies associated more to businesses.

Those results on the forecasting aspect are robust, and the diagnostics suggest that the

Bayesian perspective on technology diffusion is well specified. There seems to be scope though

for further enhancing the results, especially by means of additional data. The key challenge

in this respect is that the technologies that are the most interesting – those that are the most

recent to have been introduced and about to diffuse widely – are those for which the data tend

to be most limited. One of the greatest advantages of the framework presented in this paper

though is that it can provide estimates even if those data are available only to some extent.
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1 Introduction

Technology in general, and digital technology in particular, is an important component of our

economic lives. Generally, many aspects of our day-to-day activities have become more efficient,

or even possible, by the access to a stock of technology stemming from a continuous stream of

past innovations. Not all of us have the same access though, as a function for example of where we

live. As such, the ability to understand what is or predict what will be the technological bundle

installed in the future is important and this paper presents a new perspective for monitoring

and forecasting technology adoption.

This new perspective enables working with the noisy data on technology adoption typically

available and performing well even when the available data is sparse or completely missing.

This may happen, for example, in the case of technologies that have been introduced most

recently and so have yet to diffuse widely, and those technologies in some ways are the most

interesting, because the impact they may have on the economy has yet to unfold. The ability

of the framework to cope with missing data therefore is important for the task at hand.

Moreover, data on technology adoption at the country level is typically often available from

surveys. Frequently, the results do not originate from the same firms or households. Addition-

ally, data construction and coverage may vary greatly from country to country. The ability of

forecasting the mean technology adoption while remaining tolerant of missing values and outliers

without requiring a panel data set at the level of the firm are therefore desirable features of a

framework for monitoring and forecasting technology.

Modern methodological advances, notably in the field of computational statistics, allow

modelling “knowledge transfer” from one technology to the other and from one observational

unit to the other, and are computationally tractable. One such computational methodology,

employed in this paper, is hierarchical Bayesian modelling. Even though Bayesian inference

using approximation of the full posterior (as opposed to the use of conjugate priors) has been a

topic of research since the mid-twentieth century, it has recently gained both performance and

popularity, mostly thanks to the advances in the machine learning field.

The framework presented here is based on a hierarchical Bayesian structure, that allows for

both commonality and variability across units in a Bayesian context, but otherwise is deliber-

ately held as simple as possible. It reuses concepts both from classical literature on technology

adoption and recent progresses on statistics to be both easily interpretable and suited to the
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application of monitoring and forecasting the rate of technology adoption directly, and without

requiring the researcher to impute missing values.

There are not many studies that aim at spanning several technologies or countries. Most

research to date has been focused on predicting the adoption of specific technologies in specific

industries or geographic zones. An important exception, however, are Comin and Hobijn [2010],

who formalise the problem of estimating diffusion across several geographies and technologies,

and then explore reasons of adoption of certain technologies in certain countries. But the scope

of the data set used, both in terms of time and technologies (with each a certain unit of measure

of adoption, since their paper discusses the intensive margin), makes it less well-suited to what

we propose here.

The literature on technological adoption dates back several decades but has remained remark-

ably homogeneous in its core principles. It has its origins (inter alia) in research on agricultural

innovations diffusion by Griliches [1957], later applied to technology more generally by Mansfield

[1961]. The key idea in that research is that diffusion takes an “S-shape”; at the start of the

process, a few “innovators” experiment with the change, and the adoption then speeds up until

an inflexion point, followed by a reduction in the growth rate of adoption until, finally, adoption

reaches a plateau.

The reasons for the emergence of such a shape at the macro level have been extensively

researched in several fields of human sciences, most notably in marketing, sociology and eco-

nomics, which have each identified different mechanisms at the micro level and the shape they

may entail at the macro level when aggregated (an account of which is given in Young [2009]).

While in some cases it seems it is possible to favour one explanation over another based on

the picture at the macro level, discriminating between them would most often require access to

micro data, which are unavailable for a large number of technologies.

Another paper, from the field of marketing, proposes building hierarchical models as a way

to estimate the maximum adoption rate of different (related) technologies. Lenk and Rao [1990]

essentially advocate using a model similar to the one examined in this paper, but apply it to a

single market, using micro-level data. That paper is, however, a tour de force as it predates the

recent advances in efficient Monte Carlo Markov Chain (henceforth MCMC) and yet manages

to obtain results by exploiting conjugacy. Using today’s machinery, many of the assumptions

and transformations that were necessary to make the ideas proposed in the paper tractable can

be lifted and we have liberty to choose amongst a broader range of priors, among other options,
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to make the model applicable to multiple markets.

Also closely related to this paper is the work of Lee et al. [2003]. In it, the authors build

a model to predict the sales of new music albums based on sales of previous albums. The

hierarchical prior is used to set the market potential for each album. In this case they do not

make any attempt to segregate by markets.

By combining the insights of several strands of literature, the perspective presented here may

be used to monitor technology diffusion and to make an educated guess on the likely adoption

path of a specific technology in a specific geography going forward. It does so by allowing

partial sharing of coefficients across zones and country and provides a set of priors that are

flexible enough to adapt to a broad range of underlying processes.

Moreover, we allow for heterogeneity in yet one more way, by allowing estimation and fore-

casting also separately depending on who technologies are used by - households/individuals (also

referred to in this paper as consumers) or businesses (alternatively labelled producers, compa-

nies or corporates) - given the theoretical underpinnings suggest they may be characterised by

specific behaviours and so experience different diffusion dynamics.

The resulting framework is designed to be easily extensible to include information about

the regional units or the technology, serving as a test-bed to assess potential factors that might

contribute to earlier or faster adoption, as for example institutions and governance as in Baccianti

et al. [2022]. We discuss some of these extensions in the latter part of the paper.

2 Framework

2.1 The seminal diffusion model from a Bayesian hierarchical perspective

For this paper, we use the mathematical foundation of the Mansfield model (Mansfield [1961]).

That model, seminal in the literature on technology diffusion, is a particular case of the more

widely-known extended Bass Model (Mahajan et al. [1990]) in which diffusion happens exclu-

sively through imitation. Despite its early publication date, this model is very much in use in

forecasting adoption of new products and technology (for instance, Stoneman [2011], Sudtasan

and Mitomo [2017], Jha and Saha [2018]).

Conceptually, in the Bayesian hierarchical perspective taken here, the diffusion process has

two types of entities: technologies, for which a distinction is going to be made between tech-

nologies adopted by consumers (households/individuals) and those adopted by producers (busi-
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nesses), and countries. Both entities have particular features that are intrinsic to them.

Let’s first consider technologies. Technologies are invented, or start being popularised, at

some period in time, some of them are “easier”, or faster, to adopt than others, and they are

not all relevant for the whole population. While the timing of diffusion merely represents the

point in time at which diffusion reached or will reach its inflexion point, the rate at which they

are adopted and the share of the population that is ultimately going to adopt them might merit

further discussion. We take them in turn.

The “intrinsic speed” of diffusion of a technology might arise from several factors that have

been researched in the literature. This is, in fact, the object of Young [2009], who identifies

three main potential sources of diffusion. The first is “contagion”, the second is social imitation

and the third is social learning. Out of those, he singles out social learning as the most likely

explanation. In other word, individuals and companies adopt technologies once they have enough

evidence that said technology will offer benefits to them. Following this, there is no reason to

think that different technologies, each with their own characteristics, will have the same pattern

of diffusion. This is why judgemental forecasts of technology diffusion that one can occasionally

find in the media are usually to be taken with a grain of salt. They depend, often substantially,

on the belief of the person formulating them of how close an innovation is to previous innovations.

In our framework, we do away with such an a-priori judgement by assuming that completely

unknown technologies are some sort of combinations of all past technologies in the set and then,

as we gain more information on it, we update our parameter estimates accordingly.

The maximum adoption likewise originates from the rationale of social learning. Since con-

sumers and producers adopt technologies that they find beneficial for them, there is no reason

to believe that technologies are, if adopted, beneficial for the whole population or for a fixed

share thereof. As such, we estimate this criterion but do not attempt, when confronted with a

completely unheard-of technology, to consider it as a mix of all other. Rather, we start with

the initial assumption that technologies that are measured, because they made their way into

the set of technologies tracked by statistical bureaus, will usually reach a significant part of the

population, but we remain extremely vague about the exact quantity and let the “data speak”

relatively early on.

Next, let’s consider the other conceptual entity in the model, the countries. We see countries

as being heterogeneously “permeable” to technologies on two aspects. On the one hand, we let

the model allow that a country adopts a certain technology earlier than its peers. The second
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aspect we model is that, initially independently from this “lag” in the timing of adoption, some

countries, once they are on the path to adoption, reach the full adoption of the technology faster,

ending the diffusion process sooner than another country that would have the same “lag” but a

smaller adoption speed modifier coefficient.

While simple, with only technologies and countries to consider, and the diffusion process

fully characterised by three parameters, the framework used here is surprisingly well-suited to

represent the diffusion process, provided one does not enforce too restrictive priors. Indeed, as

will be seen in the next section, and while not making any claim at describing the causal process

of adoption, this model can be used to represent technology diffusion and the uncertainty arising

from both the process itself and the measurement.

2.2 Why a Bayesian Hierarchical Model Perspective?

The framework detailed here enhances the scope of the Mansfield model in a number of ways.

While Mansfield [1961] and other authors have traditionally sought to estimate the mean adop-

tion and then used the model to assess the impact of different events or characteristics on this

mean adoption, the present model seeks to estimate a probability density of adoption lying in a

certain span, given the data already at hand.

The different objective has two main implications:

1. The estimation needs to start from prior distribution and make those priors wide enough

so that they do not have too much impact on the final distributions.

2. The assessment of the model should be done in such a way that we do not only check the

alignment of the means but of all the quantiles of the distributions, forecast and observed.

Rather than an entirely new model with new functional form of the mean, it is an extension

where, besides the mean, we seek to estimate the variance and correlations between countries

and between technologies. This is done with the idea of being able to incorporate the notion

of risk into potential higher-level models. By being more flexible with the error terms and

incorporating the results of recent research in both statistics (Ferrari and Cribari-Neto [2004])

and computer science (Hoffman and Gelman [2014]), we provide a tool that makes forecasting

adoption able to fit future data more closely while remaining feasible with relatively few data

from the past.
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2.3 The Probability Density of the Rate of Adoption

The specification of the model as outlined above, with the focus on the diffusion among popu-

lations of firms or households/individuals, has two important consequences:

1. The diffusion process is binary

2. The image (the domain of definition of the result) of the diffusion function is constrained

The first point is similar to most of the diffusion models, including the canonical Bass

model. It means that members of the population either adopt the technology or do not. In the

technology adoption literature, this is called the extensive margin of adoption. Estimating the

so-called intensive margin of adoption (for instance, not only the share of the population that

uses internet banking but also the share of banking transactions performed via the internet)

is not the original purpose of the model but can be accommodated if the intensive margin is

expressed as percentage of a theoretical maximum. This point, however, might benefit from

further research.

The second point orients the choice of the likelihood or probability density function. As

detailed in Ferrari and Cribari-Neto [2004], a sensible choice in such situations is the Beta

distribution. This distribution is appropriate where the variable of interest is a proportion or a

rate (which is the case with the adoption rate). The probability density for the adoption rate is

expressed using the alternative parameterisation of the Beta distribution (also found in Ferrari

and Cribari-Neto [2004]):

π(yijt;µijt, εi) =
Γ(εi)

Γ(µijtεi)Γ((1− µijt)εi)
y
µijtεi−1
ijt (1− yijt)(1−µijt)εi−1 (1)

where the outcome variable, yijt is the share of the sample (be it consumers or compa-

nies/firms) in country i who declared to have adopted technology j in year t, εi is the concen-

tration term1 associated with country i and Γ is the gamma function. The next subsection, 2.4,

details the specification of the µ and ε coefficients.

1The concentration term is a term associated with the inverse of the variance of the distribution. Assuming
the variance of y to be var(y), the concentration term is ε = µ(µ−1)−1

var(y)
. A higher concentration term is therefore

associated with a lower variance and priors must therefore be chosen to be sufficiently low rather than high when
estimating the model to reflect uncertainty on the parameters.
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2.4 The Mean of the Likelihood

As for most regression models, most of the attention needs to be paid to the mean of the outcome.

For the purpose of this paper, we want to capture two sets of information: information about the

country or geographical entity in which adoption takes place (hence, enabling the incorporation

of economic, geographical and institutional conditions). In this paper, we won’t try to represent

any of the characteristics of the country or technology, but use fixed effects for these dimensions.

The addition of such characteristics might be the focus of further extensions of the framework

considered here.

The sigmoid function we choose to represent the adoption process is the classical logistic

function from Richards [1959]. The function is defined, for country i and technology j, as:

µij(t) =
oij(

1 + e−νij(t−t0ij)
) 1
ωi

(2)

with four parameters:

1. o, the maximum adoption rate once the technology is fully diffused; this is estimated at

the level of country and technology.

2. ν, the speed of adoption of a technology in a country; we estimate one per technol-

ogy/country pair.

3. t0, the timing of the adoption of a technology in a country; it is similarly defined at the

technology/country pair level.

4. ω, the shape parameter that determines the behavior of the curve near the asymptotes

(a value for this parameter of 1 corresponds to a symmetrical curve ); this parameter is

estimated at the level of the technology.

2.4.1 Maximum adoption (o)

The maximum rate of adoption is allowed to vary according to the country and technology. It

is computed as the logistic transform of the sum of country and technology intercepts, denoted

below by χi and κj respectively.
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ôij =
1

1 + e−(χi+κj)

The priors on both coefficients are standard normal distributions.

2.4.2 Speed of Adoption (ν)

The speed of diffusion depends on both country and technology. We assign the same type of prior

to both the components initially although, as we will see in Section 3, the effect of technology is

much more important than the peculiarities of the countries. The speed of diffusion of technology

j in country i is therefore computed as:

ν̂ij = δi + βj

where βj represents the “intrinsic speed” at which the focal technology diffuses and δi a

modifier of the speed of diffusion of a technology dependent on the country.

The priors, listed in Table A.5 in Appendix A, aim at representing the fact that the diffusion

of a technology will, in most cases, take a few periods (years) before reaching its maximum

value. We do not, however, impose strict limits as a consequence of these priors. Indeed, both

for the country effect (δi) and the technology effect (βj), we use a hierarchical prior on both the

mean and the variance terms of these coefficients.

Inserting such a hierarchical structure makes the inclusion of new technologies in the model

easier. Indeed, new technologies will likely enter the model with very little information. Being

able to tap into the value of the coefficients even for technologies for which we have very little

information is an asset of the model presented here. The use of a hierarchical prior at the

level of the technology has, of course, the effect of bringing the mean of the adoption speeds

closer together but this drawback allows for better estimates even for new, previously unseen

technologies to be more accurate considering what is known about other technologies. This idea

is similar in nature to the one in Lenk and Rao [1990] and the interested reader can find there

an in-depth discussion of the mechanism.
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2.4.3 Timing of Diffusion (t0)

The estimation of the t0ij is also the sum of two components, defined at the technology and

country levels. The major difference with the speed of adoption is that, in this case, we do

not allow partial pooling of the mean coefficients at the level of the technology. Indeed, each

technology is unique in its invention date and the time it takes to start being adopted. As such,

knowing when a certain invention was invented or became popular does not “teach” anything

about when another technology was invented or started being popular. This independence is

partly due to the simple nature of the fixed effects of the model and may be lifted as one adds

lower-level explanatory variables. Formally,

t̂0ij = θi + τj

where θi is the modifier specific to country i and τj is the timing intrinsic to the technology

j. In contrast to the other parameters, the parameters θi and τj have natural units, the years

of delay relative to the start of the data set (in 2005).

The wide hierarchical prior chosen to accommodate the recency of the technologies we set

out to analyse in Section 3 turns it rather uninformative. However, it remains a bit awkward not

to provide any information about the timing of adoption. While this may seem like a weakness,

it stems from a choice to keep the structure very general at this stage. Indeed, specifying the

timing of adoption relative to the time a technology reaches a certain threshold, as in Comin

and Hobijn [2010], requires a measure of the adoption at that point which makes the framework

hard to use for very recent technology. By keeping the timing coefficient floating, the present

framework allows providing an own prior for this parameter depending on the purpose of the

inference.

2.5 Concentration Term (ε)

Finally, the error is estimated at the level of the country. This choice is justified by that, under

the beta regression specification, the error (or, more specifically, the concentration term, which

is related to the error as explained in footnote 1) represents the “number of respondents” in

an hypothetical survey that would have generated the result. These coefficients represent the

“degree of confidence” one might have that the value is close to the mean.
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The choice of pooling the error at the level of the country therefore follows the rationale that

countries with different size will likely have different sample size, as the data originates from a

compilation of different country-level surveys operationalised by the different national statistical

offices.

2.6 The choice of priors

The priors were chosen so as to be wide enough to let the data “speak for itself” while allowing

pooling to perform the out-of-sample estimates. They are based (with only two exceptions)

on Normal or HalfNormal (and, with only one exception, normalised) distributions, namely

Uniform(0.0,1.5) for the shape parameter ωj , Normal(0.0,1.0) for maximum adoption, and for

speed (νij) and timing (t0) of adoption (for the hierarchical mean parameters, HalfNormal(5.0)

for the hierarchical variance parameters).2 To avoid assuming too precise a model, we chose

a Gamma(5.0,1.0) prior for the error term (concentration) εi, as this prior has a sizeable mass

near the origin.

The values of the priors are documented also in Table A.5 in Appendix A. For the interested

reader, a detailed representation of the model including the information on the priors in the

form of a full directed factor graph is given in Figure B.1 in Appendix B.

3 Data and Estimation

We start by discussing the characteristics of both data sets in the next section and then briefly

turn, without delving into details, to the inference method. We then analyse the results, high-

lighting points where work remains to be done.

3.1 Data

We use our Bayesian hierarchical structure on two data sets. Both are from the OECD and

originate from their series of surveys on information and communication technologies (ICT).

The two data sets, the “ICT Access and Usage by Households and Individuals” and the “ICT

Access and Use by Businesses” are freely available. Both are, in fact, an aggregation of recurring

surveys performed by national statistical agencies. In most OECD countries, such surveys are

2The robustness of the results to the choice of priors has been monitored closely during the production of
the paper, but mostly in the context of changes to both model and priors in parallel. A more exhaustive and
systematic analysis of this aspect of the paper is planned for the journal version of the paper.
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Table 1: Descriptive statistics on the technology adoption by households/individuals

obs ctrs first last min max most least
(#) (#) (year) (year) (%) (%) (pp) (pp)

Technology

Internet 452 29 2005 2020 13.93 99.47 63.74 13.63
Internet Banking 465 30 2005 2020 0.39 95.93 64.51 11.41
Social Networks 277 30 2005 2020 2.90 93.82 66.50 7.26
Private Emails 441 30 2005 2020 8.68 95.97 56.22 19.69
News and Magazines 428 30 2005 2020 0.43 95.86 70.23 30.42
Health Information 394 29 2005 2020 1.12 77.15 58.63 26.35
P2P eCommerce 432 30 2005 2020 0.15 47.67 34.08 3.56
VoIP/Teleconferencing 444 30 2005 2020 0.73 82.72 77.71 37.30

Source: OECD (2020), authors’ calculations.
Note: ‘P2P’ stands for ‘peer-to-peer’, ‘VoIP’ for ‘voice-over-IP’, ‘Health Information’ for ‘Health Information on
the Internet’. The column ‘most’ (‘least’) displays the difference in percentage points between the maximum and
minimum adoption for the country where that difference is the most (least).

not part of the core surveys run every year (such as the large scale labour force surveys in the EU

or the census surveys in the US). They are often carried out on an ad-hoc basis, sometimes in

order to complement a larger survey and with a varying set of questions. This has implications

for the analysis of the results over several years.

While Bayesian methods are notably resilient to irregular and missing data, extreme scarcity

of data could make the estimation phase of the analysis complicated.3 For this reason, we

operated a selection to guarantee that, for each technology/country pair, we have at least 9 data

points. This is of course only a modelling choice, and this criterion can be loosened at the cost

of larger uncertainty on the coefficients and results.

Table 2: Descriptive statistics on the technology adoption by businesses

obs ctrs first last min max most least
(#) (#) (year) (year) (%) (%) (pp) (pp)

Technology

eCommerce 233 29 2008 2019 4.70 34.69 14.71 0.00
CRM 189 28 2006 2019 7.29 56.10 34.25 3.63
ERP 236 28 2006 2019 4.27 56.48 43.10 3.58
Social Media 164 29 2011 2019 12.20 78.65 39.82 0.00
Broadband 219 26 2011 2019 1.94 62.15 52.59 0.93

Source: OECD (2020), authors’ calculations.
Note: ‘CRM’ stands for ‘Customer Relationship Management’, ‘ERP’ for ‘Enterprise Resource Planning’. The
column ‘most’ (‘least’) represents the difference in percentage points between the maximum and minimum adop-
tion for the country where that difference is the most (least).

3This does not mean that inference will be impossible for technologies left out of the present analysis because,
as was discussed in Section 2, we set and estimate hierarchical priors for the speed of diffusion at the level of the
technologies.
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As one can see, there is a certain degree of heterogeneity between the adoption-by-households/individuals

and adoption-by-businesses data sets. The surveys on technology use by individuals and house-

holds date back further and the series span a longer time accordingly. The technologies usually

end up being adopted by large swathes of the population during the course of the data set. On

the other hand, we have shorter series in the businesses surveys and the maximum adoption

of some of the technologies remains relatively low. Whether that is because technologies are

still evolving towards their maximum or rather because they already reached their maximum

adoption is left to be estimated.

3.2 Estimation Process

We estimate the coefficients using the No U-Turn Sampler (NUTS) from Hoffman and Gelman

[2014]. This sampler is a Hamiltonian Monte Carlo algorithm and allows to efficiently sample

from the posterior in a large set of situations. It requires little configuration and is used in many

recent Bayesian data analyses. We let 5 parallel chains run for 10, 000 warm-up steps, followed

by the collection of 10, 000 samples. This is done in order to collect enough sample to do robust

inference, and is given as a rule-of-thumb in Kruschke [2010].4 The inference steps take around

4 hours on each dataset using Numpyro (Phan et al. [2019], Bingham et al. [2018]).5

The diagnostic is done through the verification that none of the coefficient has a split-R̂ above

1.05 and there are no diverging samples. This provides evidence that the chains have mixed well

and that they might have reached the equilibrium distribution of states. Indeed, while there

is no definitive test allowing to exclude that some important zone of the parameter space has

not been explored, these measures (the split-R̂ and, specifically for the NUTS algorithm, the

absence of diverging samples) are generally used as the leading indicators for correct mixing of

the chains. The interested reader is invited to consult any recent book on Bayesian data analysis

(such as Gelman et al. [2013]) for reference on these concepts.

4The rule of thumb concerns the number of effective samples but this setup allows collecting enough samples
to reach this effective sample size.

5An alternative way of performing the estimation of the model would be to use Approximate Bayesian Com-
putation, such as Stochastic Variational Inference. This technique was applied with success for this model but we
present the results obtained through MCMC as they have the additional property that they converge asymptoti-
cally to the true posterior, at a cost of greater computational expense.
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3.3 Estimation Results

In this section, we discuss the results of the estimation. We start by discussing the results for

the data from the surveys related to households/individuals, then turn to the results of the

estimation performed on the surveys from businesses and conclude by putting the insights from

both together.

3.3.1 Technologies for Households and Individuals

The density estimates of the parameters linked to the technologies (for the technologies adopted

by households/individuals, i.e. Health Information on the Internet, Internet, Internet Banking,

News and Magazines, P2P eCommerce, Private Emails, VoIP/Teleconferencing, Social Net-

works) can be seen in Figure 1, some of the corresponding numerical values are also listed in

Table A.1 in Appendix A (the estimates of the parameters linked to the countries are available

in Figure 2 and Table A.2).

The estimates for the speed of adoption (βj) inherent/specific to the technology can be

found in panel (a). Those estimates appear to be consistent with the estimates reported in

previous uses of diffusion models. The literature review in Mahajan et al. [1990], for example,

reports typical results of diffusion coefficients for durable goods around 0.3 and 0.7, which are

however highly contingent on the technology or population being analysed. Here, the coefficients

for the fastest diffusing technologies, the internet and internet banking, are estimated to be in

that range, while the estimates for the other technologies are lower than that. None of the

technologies though appears to be an outlier in terms of the speed of diffusion, which might be

expected for a set of technologies that could be considered relatively homogeneous, at least in

terms of their main characteristic.

It is striking, however, that there is an outlier for the timing of diffusion (τj) - P2P eCom-

merce, estimated to be “newer” (in the sense that it will reach the half-point of its full diffu-

sion later) than the other technologies, and an outlier also for the maximum adoption (κj) -

VoIP/Teleconferencing, estimated to have a greater adoption. The estimates for the timing in

panel (b) of Figure 1 suggest that P2P eCommerce is newer and diffusing more slowly, while

the Internet and Internet Banking, and to some extent also Private Emails, are older and diffus-

ing faster. This seems sensible, given the somewhat greater complexity and specificity of P2P

eCommerce relative to those other, less complex and more general, technologies.
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The estimates for the maximum adoption (κj in panel (c) of Figure 1) signal a particu-

larly large adoption of VoIP/Teleconferencing once they will be entirely diffused. While this

may not be surprising per se, it might raise some eyebrows as it implies a higher adoption of

VoIP/Teleconferencing (which relies on the internet) than the internet itself. That result might

be due to the recent acceleration of adoption in the context of the CoViD pandemic that have

the model “confused” in that it considers the technology to still be in the accelerating phase of

the diffusion process (one can see in Table 1 that this is indeed the technology for which the

progression inside the countries was the largest).6

6This result also suggests that it is important to take into account the effects of major shocks such as the dot-
com bubble, the great financial crisis, the sovereign debt crisis, and the COVID-19 pandemic when monitoring
and forecasting digital and, more general, technology diffusion. This will be done in a future paper.
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Figure 1: Density estimates of parameters linked to the technologies
(for technologies adopted by households/individuals)

(a) Speed of adoption (βj)

(b) Timing of adoption (τj)

(c) Maximum adoption (κj)
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The densities estimated for the coefficients related to the countries are shown in Figure 2

as well as Table A.2 in Appendix A (still for technologies adopted by households/individuals).

The densities for the speed modifier (δi in panel (a)) capture to what extent the country plays

a role in explaining a speed of diffusion different from the cross-country average. The estimates

are relatively similar across the countries, and the ordering is consistent with the notion that

technologies diffuse faster in smaller economies, owing for example to greater population density

and/or openness.7

Figure 2: Density estimates of parameters linked to the countries
(for technologies adopted by households/individuals)

(a) Speed modifier (δi) (b) Timing modifier (θi) (c) Maximum modifier (χi)

7We invite the reader accustomed to frequentist models to analyse those results with caution and keeping in
mind that the inference mechanism is very different here. Since represented here are the parameter with their
98% highest density interval, having those interval crossing the x = 0 axis does not mean we “reject” a country
effect.
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The estimates for the timing modifier (θi in panel (b) of Figure 2) suggest that adoption

begins earlier in countries that are smaller and/or more north, which would broadly match the

pattern of location of some of the major technology companies. According to the estimates for

the maximum diffusion at the country level (κj in panel (c) of Figure 2), the smaller and/or

more north countries also tend to have a higher maximum adoption once the technology has

fully diffused.

3.3.2 Technologies for Businesses

The results on the technologies adopted by businesses (i.e. Broadband, CRM, eCommerce, ERP

and Social Media) are available in Figures 3 and 4, as well as Tables A.3 and A.4 in Appendix

A. Much like for the technologies used by individuals/households, the speed of diffusion (βj in

panel (a) of Figure 3) seems to be roughly the same for all technologies, and the discriminant

factors for technologies appear, once again, to lie in the timing and maximum adoption.

Examining the timing of adoption, it seems that CRM, ERP and the use of Social Media

by businesses are expected to reach the half-point of their diffusion somewhere around 2011 - 5

years after the start of the dataset for business technologies, which corresponds to the value 5

of τj in panel (b) of Figure 3. Broadband adoption and eCommerce, on the other hand, seem to

be technologies that are going to reach the middle point of their adoption at a later date, with

eCommerce seemingly reaching the inflexion point of its diffusion curve only around 2020.

The most striking contrast, however, seems to be found on the side of the maximum adoption

(κj in panel (c), Figure 3 vs Figure 1). CRM and ERP adoption will likely peak at a lower

adoption rate than the other technologies, that are most likely to be widely spread once their

diffusion is complete. This makes intuitive sense: CRM and ERP are mostly designed for

companies active in industrial and commercial activities. As such, it seems relatively logical

that they will not be seen as useful to as many companies as other technologies such as, for

instance Broadband internet, and so not diffuse as widely. It seems, therefore, that, in this

respect, the Bayesian perspective is helpful to discriminate accurately between technologies.
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Figure 3: Density estimates of parameters linked to the technologies
(for technologies adopted by businesses)

(a) Speed of adoption (βj)

(b) Timing of adoption (τj)

(c) Maximum adoption (κj)
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Both the spread between countries and the uncertainty on the parameters is larger on the

business than on the individuals data set while, if one abstracts from the outliers in each of the

data set, the spread of the timing parameter modifier θi is comparable. The ranking in terms of

means is different from the one for the individuals in its details but it remains broadly similar.

Figure 4: Density estimates of parameters linked to the countries
(for technologies adopted by businesses)

(a) Speed modifier (δi) (b) Timing modifier (θi) (c) Maximum modifier (χi)
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4 Forecasts

4.1 Production

In order to produce forecasts using the framework presented above, we use Stochastic Variational

Inference (SVI) rather than the more traditional Monte Carlo Markov Chain (MCMC) that was

used to produce the estimates in Subsection 3.3. SVI works by approximating the distribution

of the latent variables by a multivariate normal distribution and then looking for the set of

parameters minimizing the Evidence Lower BOund (ELBO) using stochastic gradient descent.

This is done using the Numpyro Python library (Phan et al. [2019], Jha and Saha [2018]).

The choice of using SVI rather than MCMC was made for a practical reason. Stochastic

Variational Inference is much faster than Monte Carlo Markov Chain techniques and produces

approximately the same results. The drawback is that, contrary to MCMC, we have no guar-

antee of asymptotic convergence to the true posterior distribution. Since the task of evaluating

forecasts requires a large number of estimation steps and that the main purpose of this section is

not to discuss the value of the coefficients but rather to analyse the divergence of the forecasted

density with the observed value, the choice was made to use this approximate technique.

4.2 Evaluation

The evaluation of the density forecast is done using the Probability Integral Transform (referred

to as PIT henceforth). This method, described at length for instance in Diebold et al. [1998],

consists of gathering the observed values on the cumulative distribution function (CDF) of the

density forecast. If the density forecast were perfect, the density of this collection of values

would correspond to the density observed in the case of a uniform distribution (and this would

mean that the empirical CDF corresponds to the forecast one). We therefore plot this empirical

collection of transformed values against several draws of the same number of uniform random

variables. If the empirical curve is above those draws, it means that there are more values that

fall on this part of the CDF than what would be normally expected.

Formally, for each observed datapoint for technology j and country i at time t, aijt, we

produce the density forecast p̂ijt|..t−h for the h-steps ahead forecast of technology j in country

i, then the probability integral transform set for the h-steps ahead forecasts are:

PITh = {Fijt|..t−h(aijt)∀i, j, t}
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where Fijt|..t−h is the empirical cumulative distribution function:

Fijt|..t−h(aijt) =

∫ aijt

0
p̂ijt|..t−h(x)dx

Since, when a predictive density coincides with the empirical one, their cumulative density

functions are identical, the distribution of their results should follow a uniform distribution.

We prefer this to summarising this fit through a single numerical statistic such as the statistic

of Kullback and Leibler [1951], because kernelised graphical representations of the PIT against

samples of the uniform distribution enable making diagnostics about the properties of the pre-

dictive density that are causing the divergence.

We now turn to the actual forecasts. We begin with “in-sample” technologies - technologies

that can be used to train the model. We do this because the use of the model for forecasting

would naturally be envisaged primarily for the technologies that helped to estimate the model,

and because it is a setting in which the forecast would be expected to be very accurate. We then

consider technologies that cannot be used to train the model. This is important for practical

applications in which the model would be of most interest. Indeed, it might be used in the fore-

casting of the most recent, or completely new, technologies - technologies that would naturally

be “out-of-sample” for a few years (before data about their adoption starts to be collected).

This is of course a more challenging test for the model, and also a test against overfitting.

4.3 In-sample technologies

We start by producing the forecast of the next time-steps of technologies that were used to

calibrate the model. We do so by “masking” the last iterations of each of the series to emulate

the situation where a forecaster wants to produce a forecast of the adoption of technology she

already has data on for the next few years.

Concretely, and for each of the lags considered here (from h ∈ [1, 5]), we produce p̂ijt|..t−h,

the h-steps ahead density forecast (where j is the index of the technology and i the index of the

country) and their corresponding cumulative density function F̂ijt|..t−h. We then compute the

value of the CDF for all observed adoption proportion, F̂ijt|..t−h(aijt). This statistic should be

indistinguishable from a draw from the Uniform distribution on the [0, 1] interval if the forecast

was perfect. Figure 5 shows the statistic against a draw from the Uniform distribution with the

same number of samples as the one available as observed data (to allow comparability).
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Figure 5: Precision of forecasts for in-sample technologies

(a) Technologies adopted by households/individuals

(b) Technologies adopted by businesses

(c) All technologies

Notes: The panels show the predictive probability integral transform, PIT, for 1 to 5 steps ahead (red line) relative
to a family of 100 for a random sample of identical size from a uniform distribution.

A couple of points on the results in Figure 5 are worth making. First, the results are better

for shorter horizons, for which the predictive PITs are more closely aligned to the PITs from a

random sample, and worse for longer horizons. Second, when using technologies either directed

only at individual consumers or at corporate consumers, in panels (a) and (b), the forecast seems

biased: there is a spike of observations for values that are near the maximum of the forecast

distribution.

This seems to indicate that the forecast is too conservative: indeed, the growth of the actual

adoption leads our generalised logistic function-based guide. It is interesting to note though

that when both sets of technologies are added to the model, as shown in panel (c) of Figure 5,

the larger volume of data helps providing a better forecasting density. While the size of the bias

is reduced substantially in this way, it does not, however, manage to get rid of the bias towards

lower values completely. Subsection 4.4 below provides some insights as to the reason for such

a result.
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4.4 Out-of-sample technologies

Part of the value of the framework developed in this paper lies in its ability to predict adoption

of technologies that were not used to train it, and it not being limited to single technologies.

Due to the nature of the evolution of technology, once enough information is available at the

level of a single technology to produce a valuable known-technology forecast, it may be too late

for that forecast to be of much practical or policy relevance. As such, the performance of the

model on technologies that are unknown is probably the single most interesting aspect of the

forecasting application of this model.

We therefore analyse the one-step-ahead forecast produced by holding the technology out of

the training set. We then include the information available for the first year where we have data

available on the technology (for any country) and produce the one-step-ahead forecast again,

and then progressively add new years to the training set. We repeat the process for 5 years,

holding each time a technology out and keeping only the forecast for the one-step-ahead forecast

for this technology.

The results, in Figure 6, are sensible, although they seem surprising at first sight. Contrary

to the results presented in Subsection 4.3, only the results for the one-step-ahead forecast for

out-of-sample technologies show that the model is under-confident in the case of technologies for

consumers when it has no information, in the sense that most observed data fall at the center of

the predicted distribution (and the PIT is therefore hump-shaped), and overestimating rather

than underestimating for technologies destined to producers. With hindsight, this makes sense

if the initial data point helps to anchor the forecast.

What is most remarkable, though, is that the framework performs well when we have very

little data on a specific technology at our disposal. Indeed, the results for the predictions with

one to four years of data available are quite close to the uniform distribution that would be the

goal for such a statistic. It seems, therefore, that the framework performs best when applied to

recent technologies and is applied to the short-term prediction task.

Finally, one may remark that, as more data becomes available, the Probability Integral

Transform plot starts to exhibit the bias shown in Subsection 4.3. This might suggest that

the regularisation imposed by the priors is a bit too stringent and that looser priors on the

speed of adoption might be required. This has to be weighed against the need for priors making

the inference task possible, given the dataset we have. Further work is required to study this
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Figure 6: Precision of forecasts for out-of-sample technologies

(a) Technologies adopted by households/individuals

(b) Technologies adopted by businesses

(c) All technologies

Notes: The panels show the predictive probability integral transform, PIT, for 1 to 5 steps ahead (red line) relative
to a family of 100 PITs for a random sample of identical size from a uniform distribution.

possibility and, perhaps, to provide more flexibility in the design of diffusion curve. Another

possibility is that the adoption process is impacted by exogenous shocks.

5 Caveats and Conclusions

This paper has presented a new perspective on technology forecasting, based on a simple yet

easily extendable Bayesian hierarchical structure applied to the seminal model of technology

diffusion. The key contribution of this paper is thus a methodological one. With the advent of

macroeconomic models based increasingly on micro-data, being able to forecast the adoption of

individual technologies rather than relying on aggregated features might enable the forecaster to

get a more refined understanding of the dynamics of the economy and model it in a more detailed

fashion. Further, being able to forecast the diffusion of technologies in certain geographies

enables the elaboration of policies with the ultimate goal of facilitating the acquisition, by
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businesses and individuals alike, of the technology mix that best fits her general strategy.

The paper illustrates that Bayesian methods are well-suited for such a task. Indeed, they

can be used even with relatively scarce data and produce predictions that are both easy to

understand and allow for the quantification of the uncertainty of the same predictions (given

the model). The paper also contributes to the policy debate though, owing to the conclusions

from the application to digitalisation, and the data set for EU and OECD countries and different

digital technologies adopted by either households/individuals or by businesses.

The first conclusion is that digital technology diffusion speed remains largely dependent on

the intrinsic characteristics of said technologies. However, country effects exists, both in the

timing of the adoption and also in its speed. The relative ranking of countries might seem

unsurprising: more north countries tend to lead, both in terms of speed as in terms of timing,

while countries in some other regions tend to adopt technologies later and more slowly.

This article highlights, however, that there are significant differences in terms of the diffusion

of technologies directed at individuals compared to the ones directed at businesses. While

there seem to be countries in which both businesses and individuals adopt technologies faster

and earlier than in other, some countries seem to display disparities in their rank on speed

and timing of diffusion between the two sets of technologies. This finding, while requiring

further investigation, might be seen as an argument for tackling digitalisation separately in

what concerns the supply and the demand side of the economy.

The distinction made in this article between digital technologies adopted by households/individuals

or businesses is of course artificial, as many digital technologies are used by both of them, espe-

cially so-called “enabling technologies” which provide stepping stones for other, more advanced

technologies that would not exist without them. We therefore classified technologies according

to the intensity with which the technologies are used by respectively by households and busi-

nesses, or the likelihood that they are adopted because they are such stepping stones, as for

example broadband as business technology (enabling intelligent process automation, etc).

The framework used in this paper has many attractive features such as a tolerance to missing

values inherent to the type of data used here and, up to a point, a certain resistance to outliers

(being a Bayesian model, it tends to discount them and not let them influence the rest of the

inference as much as other techniques might). Moreover, it is a framework making it possible

to produce forecasts even for technologies not previously seen, something that is intended to be

looked at in related work on-going. The initial forecasts become better as more technologies
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are introduced to the model and could potentially be enhanced with the addition of regressors

about the characteristics of the technologies.

While that framework has many advantages, it also has a number of features that could be

viewed as shortcomings, some inherent to the methods used, and some that may be lifted in

future. Among the first, linked to the Bayesian perspective, the necessity of choosing priors is

the most obvious. Although the authors took care to define uninformative priors were relevant

(mostly on the variance parameters), such priors depend inevitably on both technical and domain

knowledge. In the context of this analysis, several priors where analysed with essentially the same

results (sometimes at the cost of longer computing time). The interested reader is, of course,

welcome to estimate the model with a different set of priors and verify that the conclusions

essentially remain.

Among the limitations that could be lifted in future endeavours are the issues revealed by

the PITs, notably at the margins of the densities. Indeed, determining whether they come

from outliers that would warrant a separate modelling or from structural properties of the

beta likelihood function could make the model perform better not least at prediction tasks.

Moreover, additional insights into the deeper characteristics of the technologies would make

the task of applying the framework to other, notably new technologies, easier. In general,

the literature on technological forecasting, because it often attempts to predict diffusion of

technologies in isolation (either by virtue of the dataset or by the model having no dependence

of coefficients across technologies), and has not taken into account the intrinsic characteristics

of the geographical areas in which they are diffusing.

The framework resulting from the new perspective on technology diffusion is, in any case,

already usable in practice to make predictions on the near term evolution of digitalisation in

different geographical areas and, more generally, to enable inference on digital diffusion. The

inference is also the next focus in this line of research notably in relation to potentially disruptive

episodes or events that might impact on technology diffusion, such as the financial and sovereign

debt crises, the COVID-19 pandemic or more recent ones.
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Appendix A: Tables

Table A.1: Parameter estimates for (intrinsic) speed (β) and timing (τ) of adoption
(for technologies adopted by households/individuals)

beta tau
mn std med 5% 95% mn std med 5% 95%

Technology

P2P eCommerce -0.31 0.38 -0.30 -0.94 0.31 9.42 1.26 9.53 7.25 11.24
Health Information -0.14 0.38 -0.14 -0.78 0.47 4.34 0.90 4.40 2.84 5.66
Social Networks -0.13 0.38 -0.12 -0.76 0.48 3.76 0.88 3.81 2.31 5.09
VoIP/Teleconferencing 0.01 0.38 0.02 -0.62 0.62 5.52 0.95 5.61 3.90 6.88
Private Emails 0.10 0.38 0.11 -0.53 0.71 0.77 0.88 0.75 -0.59 2.23
News and Magasines 0.11 0.38 0.12 -0.52 0.72 3.01 0.86 3.04 1.62 4.33
Internet 0.27 0.38 0.28 -0.37 0.88 0.62 0.89 0.59 -0.74 2.08
Internet Banking 0.34 0.38 0.35 -0.30 0.95 2.09 0.86 2.09 0.74 3.45

Note: ‘P2P’ stands for ‘peer-to-peer’, ‘VoIP’ for ‘voice-over-IP’, ‘Health Information’ for ‘Health In-
formation on the Internet’, ‘mn’ stands for ‘mean’, ‘std’ for ‘standard deviation’, ‘med’ for ‘median’.
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Table A.2: Parameter estimates for (country-specific) speed (δ) and timing (θ) modifier
(for technologies adopted by households/individuals)

delta theta
mn std med 5% 95% mn std med 5% 95%

Country

SI -0.19 0.37 -0.20 -0.79 0.42 1.12 0.60 1.10 0.15 2.12
JP -0.18 0.37 -0.18 -0.77 0.44 -0.08 0.60 -0.09 -1.04 0.93
DE -0.18 0.38 -0.19 -0.79 0.45 -0.31 0.87 -0.31 -1.74 1.13
FR -0.16 0.37 -0.17 -0.76 0.46 1.81 0.61 1.79 0.82 2.82
NL -0.10 0.37 -0.10 -0.69 0.52 -1.56 0.60 -1.58 -2.51 -0.55
DK -0.03 0.37 -0.03 -0.62 0.59 -2.06 0.60 -2.08 -3.00 -1.05
GB -0.02 0.37 -0.02 -0.61 0.60 -0.19 0.58 -0.22 -1.12 0.78
BE -0.02 0.37 -0.02 -0.61 0.60 0.36 0.59 0.34 -0.57 1.34
PL -0.00 0.37 -0.01 -0.60 0.61 1.97 0.60 1.96 1.01 2.96
FI 0.02 0.37 0.02 -0.57 0.64 -0.94 0.61 -0.96 -1.91 0.07
EE 0.02 0.37 0.01 -0.58 0.64 -1.66 0.60 -1.68 -2.62 -0.65
IT 0.03 0.37 0.03 -0.56 0.65 2.27 0.60 2.26 1.30 3.27
BR 0.05 0.37 0.05 -0.55 0.67 1.82 0.65 1.81 0.76 2.90
AT 0.06 0.37 0.05 -0.54 0.67 0.51 0.58 0.49 -0.43 1.48
TR 0.06 0.38 0.06 -0.54 0.69 1.12 0.67 1.12 0.04 2.24
CZ 0.07 0.37 0.06 -0.52 0.69 -1.72 0.60 -1.74 -2.68 -0.71
LU 0.07 0.37 0.06 -0.53 0.68 1.00 0.60 0.99 0.03 2.01
SK 0.08 0.37 0.07 -0.52 0.69 -0.15 0.60 -0.17 -1.11 0.85
HU 0.10 0.37 0.09 -0.50 0.72 1.53 0.60 1.51 0.57 2.53
IE 0.10 0.37 0.09 -0.50 0.72 -0.48 0.60 -0.50 -1.45 0.52
SE 0.12 0.37 0.12 -0.47 0.74 -1.72 0.59 -1.74 -2.65 -0.73
LV 0.13 0.37 0.13 -0.47 0.75 -0.19 0.61 -0.21 -1.17 0.83
ES 0.14 0.37 0.14 -0.45 0.76 0.64 0.58 0.63 -0.29 1.62
NO 0.14 0.37 0.14 -0.45 0.76 -2.62 0.61 -2.65 -3.59 -1.60
LT 0.15 0.37 0.15 -0.44 0.77 -0.83 0.63 -0.85 -1.85 0.22
PT 0.17 0.37 0.17 -0.42 0.79 1.12 0.58 1.10 0.18 2.09
IS 0.18 0.37 0.17 -0.42 0.79 -3.41 0.63 -3.43 -4.42 -2.34
KR 0.28 0.38 0.27 -0.33 0.90 -0.85 0.61 -0.88 -1.84 0.17
MX 0.28 0.38 0.28 -0.33 0.92 3.02 0.77 3.01 1.78 4.30
GR 0.32 0.37 0.31 -0.28 0.94 1.20 0.61 1.19 0.22 2.21

Note: The countries are denoted by their two-digit ISO codes, ‘mn’ stands for ‘mean’, ‘std’
for ‘standard deviation’, ‘med’ for ‘median’.

Table A.3: Parameter estimates for (intrinsic) speed (β) and timing (τ) of adoption
(for technologies adopted by businesses)

beta tau
mn std med 5% 95% mn std med 5% 9%

Technology

CRM -0.22 0.42 -0.21 -0.91 0.46 4.68 2.31 4.83 0.63 8.13
eCommerce -0.20 0.42 -0.19 -0.88 0.48 12.45 2.11 12.61 8.80 15.58
ERP -0.02 0.42 -0.01 -0.70 0.65 4.89 1.49 5.03 2.35 7.05
Social Media 0.24 0.42 0.25 -0.45 0.92 4.97 1.36 5.07 2.69 6.98
Broadband 0.30 0.42 0.31 -0.40 0.97 7.13 1.46 7.32 4.55 9.11

Note: ‘CRM’ stands for ‘Customer Relationship Management’, ‘ERP’ for ‘Enterprise Resource
Planning’, ‘mn’ stands for ‘mean’, ‘std’ for standard deviation, ‘med’ for ‘median’.
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Table A.4: Parameter estimates for (country-specific) speed (δ) and timing (θ) modifier
(for technologies adopted by businesses)

delta theta
mn std med 5% 95% mn std med 5% 95%

Country

NO -0.10 0.39 -0.11 -0.73 0.54 1.90 0.69 1.91 0.77 3.03
CZ -0.10 0.39 -0.11 -0.73 0.54 -0.80 0.72 -0.80 -1.97 0.39
BR -0.08 0.40 -0.09 -0.73 0.58 -1.65 0.91 -1.65 -3.15 -0.17
IE -0.06 0.39 -0.07 -0.69 0.58 -0.50 0.72 -0.50 -1.67 0.69
DE -0.05 0.39 -0.05 -0.68 0.59 -2.31 0.67 -2.31 -3.41 -1.19
SE -0.05 0.39 -0.06 -0.68 0.58 1.62 0.69 1.62 0.49 2.76
DK -0.04 0.39 -0.05 -0.67 0.59 -2.51 0.67 -2.51 -3.60 -1.41
BE -0.02 0.39 -0.03 -0.65 0.62 -0.35 0.66 -0.35 -1.44 0.72
GB -0.01 0.39 -0.02 -0.64 0.63 -0.08 0.77 -0.08 -1.35 1.19
LT 0.00 0.39 -0.01 -0.63 0.64 -0.84 0.76 -0.84 -2.09 0.40
SI 0.04 0.39 0.03 -0.59 0.68 -1.10 0.68 -1.10 -2.21 0.02
NL 0.04 0.39 0.03 -0.59 0.67 -0.06 0.65 -0.06 -1.13 1.00
HU 0.05 0.39 0.04 -0.58 0.69 -0.24 0.79 -0.24 -1.55 1.03
FI 0.06 0.39 0.05 -0.57 0.70 -1.30 0.64 -1.30 -2.36 -0.24
AT 0.06 0.39 0.06 -0.57 0.70 1.06 0.67 1.05 -0.05 2.16
EE 0.07 0.39 0.06 -0.56 0.70 0.53 0.71 0.53 -0.62 1.69
SK 0.09 0.39 0.08 -0.54 0.73 1.54 0.65 1.55 0.47 2.62
FR 0.10 0.39 0.10 -0.53 0.74 1.75 0.68 1.74 0.63 2.86
LV 0.11 0.39 0.10 -0.52 0.75 -0.06 0.89 -0.04 -1.56 1.37
PL 0.12 0.39 0.12 -0.50 0.76 0.26 0.64 0.25 -0.80 1.32
ES 0.12 0.39 0.11 -0.51 0.75 2.14 0.68 2.14 1.01 3.25
GR 0.14 0.39 0.13 -0.50 0.79 1.65 0.75 1.65 0.42 2.88
TR 0.14 0.39 0.14 -0.49 0.79 -0.19 0.80 -0.17 -1.53 1.11
PT 0.15 0.39 0.15 -0.47 0.79 -0.04 0.65 -0.04 -1.11 1.03
LU 0.15 0.39 0.14 -0.48 0.79 -0.84 0.69 -0.84 -1.98 0.29
IT 0.24 0.39 0.24 -0.39 0.88 1.91 0.67 1.91 0.80 3.02

Note: The countries are denoted by their two-digit ISO codes, ‘mn’ stands for ‘mean’, ‘std’
for ‘standard deviation’, ‘med’ for ‘median’.

Table A.5: The priors in the model

Distribution
Coefficient

Concentration (error) (εi) Gamma(5.0, 1.0)
Shape (ωj) Uniform(0.5, 1.5)
Maximum Adoption (χi and κj) Normal(0.0, 1.0)
Speed of diffusion (δi and βj) Normal(hierarchical priors)
Timing of diffusion (θi and τj) Normal(hierarchical priors)

Hierarchical Priors
Hierachical mean parameters Normal(0.0, 1.0)*
Hierarchical variance parameters HalfNormal(5.0)

Note: *Except for the the prior on τj which was set to a Normal(0.0, 10.0) to allow for
the model to fit in the middle of the dataset.
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Appendix B: Figures

Figure B.1: Complete directed factor model
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