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Abstract

In this paper we develop a general framework to analyze state space models with time-

varying system matrices where time variation is driven by the score of the conditional

likelihood. We derive a new filter that allows for the simultaneous estimation of the

state vector and of the time-varying parameters. We use this method to study the time-

varying relationship between the price dividend ratio, expected stock returns and expected

dividend growth in the US since 1880. We find a significant increase in the long-run

equilibrium value of the price dividend ratio over time, associated with a fall in the long-

run expected rate of return on stocks. The latter can be attributed mainly to a decrease

in the natural rate of interest, as the long-run risk premium has only slightly fallen.

JEL codes: C22, C32, C51, C53, E31.

Keywords: State space models, time-varying parameters, score-driven models, equity

premium, present-value models.
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Non-technical summary 

A decade after the Great Recession the global economy is mired in an environment 

of low real interest rates, low growth and high stock valuations. Whether this is a 

“new normal” or we can expect to move to a different steady state is a question that 

is at the centre of a new research agenda on macro-financial trends in a changing 

environment. The issue of structural breaks is back in the spotlight, as it is the use 

of time series models that allow for parameter instability. In this paper we contribute 

to this debate by developing a general method to analyse state space models where 

parameters change over time and by applying this method to study the evolving 

relationship between stock valuations, stock returns and dividend growth since 1880 

in the US.  

In the methodological part of the paper we introduce a general framework to 

analyse so called score driven state space models. In these models, time variation in 

the parameters is driven by the score of the conditional likelihood. The intuition is 

simple. At each point in time, the score of the likelihood, that is the derivative of the 

likelihood with respect to the parameters, provides information on how well the 

model is fitting the data. When the score is close to zero, the likelihood is close to its 

maximum and parameters can remain relatively stable. Yet, when the score is far 

from zero, a change in the parameters can help better fitting the data. Things 

become more complicated when the model also features unobserved components, 

which need to be filtered out from the data together with the parameters. We 

propose an algorithm that, together with the Kalman filter, solves this problem. 

Notably, any time series model that admits a state space representation (unobserved 

component models, ARMA models, Vector Autoregressions) fits into our general 

framework. 

Our empirical investigation uses this methodology to shed light on the secular 

rise in the price dividend (PD) ratio of stocks in the US since 1880. We start from 

the well-known Campbell and Shiller decomposition (Campbell and Shiller, 1995), 

according to which the PD ratio can be split in two components: the expected 

discounted sum of dividend growth minus the expected discount sum of the return 

on stocks. When analysed over the long time period that we consider, an apparent 

contradiction emerges: stock valuations display a secular upward trend, steeper in 

the 1960s and in the 1990s, while both dividend growth and the return on stocks 

appear to be stationary. This is not just eyeball econometrics. Lettau and Van 

Nieuwerburgh (2006), for instance, document two structural breaks in the mean of 

the PD ratio but fail to provide an explanation of whether these are matched by 

significant changes in the long-run value of expected returns or of expected dividend 

growth. A plausible explanation is that these changes in the low frequency 

component of stock returns and dividend growth are overshadowed by the presence 

of very volatile transitory components. It is well known that, in such an 
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environment, structural break tests have low power (Cogley and Sargent, 2005 and 

Benati, 2007). We argue that the changing relationship between the PD ratio, 

returns and dividend growth could be better captured by a flexible unobserved 

component model that allows for gradual shifts in their long-run mean as well as in 

their volatility. We use our new method to estimate a generalized version of the 

Cambpell and Shiller decomposition, which allows for time-varying steady states as 

well as for time-varying volatilities.  

Our findings provide a set of novel results in the literature. First, we show 

that expected returns and, to a lesser extent, expected dividend growth, exhibit slow 

moving steady states. Expected returns, in particular, have experienced a continuous 

decline in their long-run equilibrium value. This decline accelerated in the 1960s and 

in the 1990s, prior to the stock market crashes of the early 1970s and 2000s. This fall 

in the permanent component of expected returns is reflected in an upward trend of 

the price dividend ratio, which so far the literature failed to explain. According to 

our results, prices in the 60s and in the 90s were high not because of bright economic 

prospects (high expected dividend growth) but because of low discount rates (low 

expected returns). Second, at high frequencies, expected returns and expected cash 

flows contribute equally to the price dividend ratio. At business cycle frequencies, 

however, expected returns explain the bulk of the variance of the price dividend ratio 

in normal times, while sharp drops in expected cash flows play an important role in 

recessions. The stock market crashes of 1929 and 2008 were exceptional, in that they 

were determined by both a marked increase in discount rates as well as by a collapse 

of expected cash flows. Third, the conditional correlation between expected and 

actual returns is robustly negative over the whole sample and falls from -0.60 to -

0.75, indicating increasing predictability in the last two decades. The correlation 

generally falls in recessions: bear markets predict higher future returns. Fourth, 

throughout the sample we find that the conditional variance of stock returns falls 

with the investment horizon. This confirms the notion that the stock market poses 

less risk for long-run than for the short-run investors (Siegel, 2008, Campbell and 

Viceira, 2005, Carvalho et al. 2018). Finally, we decompose long-run expected 

returns into a riskless component and a risk premium. The former is closely related 

to the real natural rate of interest (r-star), a concept that dates back to Knut 

Wicksell but that has been more recently popularized by Laubach and Williams 

(2003). Our findings indicate that the fall of r-star, particularly marked after the 

1960s as documented also by Holston, Laubach and Williams (2017) and Del Negro 

et al. (2017) accounts for most of the decrease in expected stock returns. The risk 

premium, on the other hand, has only slightly fallen, from around 4 percent at the 

beginning of the 20th century, to reach a minimum of 3 percent in 2000 and to 

rebound thereafter to around 3.5 percent. In sum, our model reveals that the fall in 

r-star explains most of the fall in the long-run expected return on equity and that 

the latter accounts for the secular increase of the PD ratio in the US. 
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1 Introduction

A decade after the Great Recession the global economy is mired in an environment of low real

interest rates, low growth and high stock valuations. Whether this is a “new normal” or we

can expect to move to a different steady state is a question that is at the center of a new

research agenda on macro-financial trends in a changing environment (Caballero et al., 2017).

The issue of structural breaks is back in the spotlight, as it is the use of time series models

that allow for parameter instability. The flexibility of these econometric tools, however, does

not come without costs, either analytical or computational. Complications can be particularly

burdensome for unobserved component models, where the latent state variables, together with

the time-varying parameters (TVP), need to be inferred on the basis of the observed data. In

this paper we contribute to this debate by developing a new method to analyze state space

models where parameters change over time and by applying this method to analyze the evolving

relationship between stock valuations, stock returns and dividend growth.

The econometric method that we propose posits a law of motion for the parameters that

is a linear function of the score of the conditional likelihood, following Creal et al. (2008) and

Harvey (2013). At each point in time, the score determines both the size and the sign of the

adjustment of the model parameters. In a state space model with constant parameters new

information (e.g. a data release) generates a prediction error that is the basis for updating and

forecasting the unobserved states through the Kalman Filter (KF) recursions. Time variation

in the parameters introduces an additional margin of adjustment to this process, calling for a

simultaneous update of both the parameters and the latent states. We derive the analytical

expressions for a new set of recursions that, running in parallel with the KF, update at each

point in time both the vector of TVP and the latent states. Within this framework, the

likelihood of any Gaussian state space model with TVP is available in closed form and the

model can be estimated by maximum likelihood (ML). An important feature of our method

is that it can easily handle parameter constraints, which might arise from economic theory or
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from a deliberate choice of the econometrician. Constraints are taken into account directly in

the estimation algorithm through a Jacobian function. Finally, missing observations, mixed

frequencies and the shrinkage of the time-varying parameters towards desired values are easily

dealt with. A Monte Carlo exercise shows that the method can replicate the salient features of

various data generating processes. In particular, our method delivers constant coefficients when

the data are simulated from a fixed coefficient model, and tracks time variation in parameters

when this is present in the data.

We then use this methodology to revisit the relationship between the price dividend ratio,

the return on stocks and dividend growth in present value models. State space models are par-

ticularly attractive to study present value relationships because they handle efficiently complex

dynamics while avoiding over-parameterization (Binsbergen and Koijen, 2010). We estimate a

generalization of the Campbell and Shiller decomposition (Campbell and Shiller, 1988), which

allows for time variation in the steady state of expected dividend growth and of the expected

return on stocks, as well as in the conditional variance of the shocks. Our findings provide a set

of novel results in the literature. First, we show that expected returns and, to a lesser extent,

expected dividend growth, exhibit slow moving steady states. Expected returns, in particular,

have experienced a continuous decline in their long-run equilibrium value. This decline accel-

erated in the 1960s and in the 1990s, prior to the stock market crashes of the early 1970s and

2000s. This fall in the permanent component of expected returns is reflected in an upward

trend of the price dividend ratio, which so far the literature failed to explain. According to our

results, prices in the 60s and in the 90s were high not because of bright economic prospects

(high expected dividend growth) but because of low discount rates (low expected returns).

Second, at high frequencies expected returns and expected cash flows contribute equally to the

price dividend ratio. At business cycle frequencies, however, expected returns explain the bulk

of the variance of the price dividend ratio in normal times, while sharp drops in expected cash

flows play an important role in recessions. The stock market crashes of 1929 and 2008 were
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exceptional, in that they were determined by both a marked increase in discount rates as well

as by a collapse of expected cash flows. Third, we decompose long-run expected returns into

a riskless component and a risk premium. We find that the former has remained relatively

stable until the beginning of the 1960s, to decrease rapidly thereafter. This corroborates the

findings in the literature that analyzes the evolution of the natural rate of interest (r-star).

The long-run equity risk premium has only slightly fallen, from 4 to 3 percent.

Relationship with the econometric literature. We are not the first ones to tackle the

issue of parameter variation in state space models. Early work by Harvey et al. (1992) shows

how to enrich unobserved components models with ARCH disturbances, Koopman et al. (2010)

introduce GARCH dynamics in a specific factor model, Eickmeier et al. (2015) and Koop and

Korobilis (2013, 2014) estimate factor models with changing loadings and volatilities using

either Maximum Likelihood or forgetting factors. All these papers focus on specific models

for which they develop ad-hoc estimation methods. The algorithm that we develop in this

paper is instead general and can be used to analyze any model that can be cast in state space

form, including factor models, Vector Autoregressions, and unobserved component models.

Notably, all these models can be analyzed within the general framework that we lay out. A

second strand of the literature includes papers in which the TVP of the model are driven by

additional stochastic processes (also known as “parameter-driven” models). In this setting,

Bayesian simulation techniques are needed (Stock and Watson, 2007; Del Negro and Otrok,

2008; Bianchi et al., 2009; Marcellino et al., 2016). The increase of computer power has made

these methods relatively more attractive. Yet time-varying parameters in these models are

typically modeled as a random walk plus noise processes, providing limited flexibility. Think,

for instance, of identification restrictions on factor loadings, steady state restrictions that can

be dictated by economic theory or stationarity restrictions that are sometimes imposed on

autoregressive models. While some of these restrictions could be handled via rejection sampling,

Bayesian methods tend to be cumbersome in the presence of non-linear restrictions in model
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parameters. In our method, restrictions on the system matrices of the state space are embedded

in the updating steps of the unobserved components and of the model parameters with no

additional computational costs.1

Relationship with the macro-finance literature. Instability in the Campbell and

Shiller decomposition has been studied mainly in the context of stock returns predictability.

Time variation either in the conditional means or in the conditional variances of dividend

growth and of the price dividend ratio has been documented, respectively, by Lettau and

Nieuwerburgh (2008) and Piatti and Trojani (2017). Our first contribution to this literature

consists of modeling time variation both in the conditional means and in the conditional vari-

ances. This is important because it is well known that a mis-specification of the conditional

mean can lead to spurious evidence of time-varying volatility (Julliard and Bryzgalova, 2019)

but also that neglecting changes in volatility leads to overstating time variation in the con-

ditional mean (Sims, 2001). Second, we are the first to provide solid econometric evidence

that the rise in valuations in the past century, and in particular after the 1950s, is due to a

fall in the long-run mean of expected stock returns. The intuition for this result is already

provided by Fama and French (2002) in their seminal paper on the equity risk premium. They

use long historical data on dividend growth and dividend yields to obtain an estimate of ex-

pected stock returns and of the implied risk premium. Upon noticing that dividend growth is

broadly stationary and unpredictable over this long sample but that the price dividend ratio

has instead risen considerably, they conclude that the only logical explanation is a decline in

expected returns. We provide an econometric method and a model specification that formal-

izes their intuition and that confirms its empirical validity. Noticeably, the estimate of the

risk premium that we obtain (around 3 to 4 percent) is in line with their calculation based on

simple unconditional means. We argue that these trends in valuations and discount rates are

too small and gradual to be detected by conventional break tests like the ones used by Lettau

1The only requirement is that these constraints need to be be expressed through a function that is continuous
and twice differentiable. A large class of commonly used restrictions can be indeed cast in this form.
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and Nieuwerburgh (2008) but are large enough to be captured by our score driven state space

model. Finally, we add to the recent literature on the relative role played by r-star and by the

equilibrium risk-premium in explaining long-term trends in the return on stocks (Greenwald

et al., 2019; Farhi and Gourio, 2018).

Structure of the paper. Section 2 constitutes the methodological body of the paper,

where we present the general framework of score driven state space models. In Section 3 we

describe the Monte Carlo exercise. In Section 4 we present the empirical application. Sections

5 and 6 discuss the main results and their implications for the literature on secular changes in

the equity premium and the fall in the natural rate of interest. Section 7 concludes the paper.

2 Score driven state space models

Let us assume that a given time series model has the following state space representation:

yt = Ztαt + εt, εt ∼ N (0, Ht),

αt = Ttαt−1 + ηt, ηt ∼ N (0, Qt), t = 1, ..., n,

(1)

where yt is the N × 1 vector of observed variables, εt is the N × 1 vector of measurement

errors, αt is the m × 1 vector of state variables and ηt is the corresponding m × 1 vector of

disturbances. The two disturbances are assumed to be Gaussian distributed and uncorrelated

for all time periods, that is E(εtη
′
s) = 0 for ∀t, s.2 The initial value of the state vector is also

assumed to be Gaussian, α0 ∼ N (a0, P0) and uncorrelated ∀t with εt and ηt.

Following Harvey (1989, sec. 3.1) it is usually assumed that the system matrices Zt, Ht, Tt

and Qt are non-stochastic. As a result the system (1) is linear with respect to the state vector.

Conditional on the information set Yt−1 = {yt−1, ..., y1} and on the vector of parameters θ, the

state vector and the observations are both Gaussian distributed; i.e. yt|Yt−1; θ ∼ N (Ztat, Ft)

2This assumption can be relaxed at the cost of a complication in the filtering formulae (see Appendix C.3).
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and αt|Yt−1; θ ∼ N (at, Pt), and the log-likelihood function at time t is:

�t = log p(yt|Yt−1, θ) ∝ −1

2

(
log |Ft|+ v′tF

−1
t vt

)
. (2)

The prediction error vt, its covariance matrix Ft, the conditional mean of the state vector at,

and its mean square error (MSE) matrix Pt, are recursively estimated by means of the KF:

vt = yt − Ztat, Ft = ZtPtZ
′
t +Ht,

at|t = at + PtZ
′
tF
−1
t vt, Pt|t = Pt − PtZ

′
tF
−1
t ZtPt,

at+1 = Tt+1at|t Pt+1 = Tt+1Pt|tT ′t+1 +Qt+1, t = 1, ..., n.

(3)

Specifically, we have that at = E(αt|Yt−1, θ) is the so-called predictive filter with its MSE matrix

being Pt = E[(at − αt)(at − αt)
′|Yt−1, θ], while at|t = E(αt|Yt, θ) is the so-called real time filter

with MSE equal to Pt|t = E[(at|t − αt)(at|t − αt)
′|Yt−1, θ]. Given the initial condition on α0,

the predictive filter is initialized as follows a1 = T1a0 and P1 = T1P0T
′
1 + Q1, and often it is

the case to express the KF recursions (3) in terms of the predictive filter only; see details in

the Appendix A.2. The state space model in (1) is the so-called contemporaneous form used

in Harvey (1989). Durbin and Koopman (2012) use instead the so-called forward form. In

this paper we prefer to use the former so that the system matrices have all the same time

dependency with respect to the vector of time-varying parameters. Using the forward form,

the time dependency of matrices T and Q needs to be adapted; for details see Appendix C.1.

The assumption that the system matrices are non-stochastic implies that the model is

linear and the MSEs are independent from the observations, see Harvey (1989) sec. 3.2.3.

Here instead, we assume that the changes in the system matrices over time are endogenous and

depend on past observations. Thus, although stochastic the system matrices are predetermined,

meaning that conditional to past observation they can be regarded ad being fixed. As a result,

the model is still conditionally Gaussian like the one introduced by Harvey (1989, sec. 3.7.1).3

3The KF generates the conditional Gaussian distribution of the state vector where the mean is no longer
linear in the observations and the MSE (conditional error covariance) depends upon the particular realization
of the observations in the sample. The case of conditional Gaussian state space model in which the system
matrices are random and adapted to the observation process has been also considered by Chen et al. (1989)
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This setup has three attractive features. First, both the state vector and the observations

are conditionally Gaussian. Second, the likelihood function ca be written in the form of the

prediction error decomposition (2) and computed by means of the KF (3). Third, although the

model is not linear in the observations, the KF delivers the minimum mean square estimates of

the state vector (see Harvey, 1989, p. 342). The key analytic challenge here is represented by

the joint updating of both the system matrices and of the state vector. To solve this problem,

we propose a new set of recursions that run in parallel with the KF.4

2.1 Score driven system matrices

The time-varying elements of the system matrices in (1) are collected in the vector ft. As in

Creal et al. (2008) and Harvey (2013), we posit the following score driven law of motion for

such vector:

ft+1 = c + Aft + Bst, st = St∇t, t = 1, ..., n, (4)

with

∇t =
∂�t
∂ft

, St = −Et

(
∂�2t

∂ft∂f ′t

)−1
, (5)

where �t is the conditional log-likelihood function of the model (1), ∇t is the score (gradient)

with respect to ft and the scaling matrix, St, is the inverse of the information matrix It. In

this case st has zero conditional mean and conditional variance equal to inverse of information

matrix.5

The system matrices may possibly contain both time-varying and constant elements and

we collect those static parameters in the vector θm. Thus, at each point in time, the system

who state the necessary conditions in order for the KF to generate the conditional mean and covariance of the
Gaussian distributed state vector.

4In the existing literature this challenge is typically solved by assuming that the vector and the time-varying
system matrices can be somehow estimated in two separate steps. This is done in papers that use classical
methods (Eickmeier et al., 2015; Koop and Korobilis, 2013) and implicitly also in studies that use Bayesian
methods, as cycling through the Gibbs sampler implies conditioning on a given estimate of the whole state
vector.

5One could choose St = I−1/2
t , in which case the conditional variance of the score is equal to the identity

matrix. Alternatively, one can set st = ∇t, in which case the score has conditional variance equal to the
information matrix. In general, to avoid numerical instability in the scaling matrix we may replace St with its
smoothed estimator S̃t = (1− κh)St + κhS̃t−1.
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matrices depend upon ft and θm, namely Zt = Z(ft, θm), Tt = T (ft, θm), Ht = H(ft, θm), and

Qt = Q(ft, θm). This dependence can be linear or non-linear. The score vector st is computed

conditional on the information up to time t and the vector ft is entirely determined by past

observations and by the vector of static parameters θf = {c,A,B}. Since the dynamic of the

system matrices is observation-driven, i.e. entirely determined by past observations and by

the vector θ = (θ′f , θ
′
m)
′, the model is conditional Gaussian and the log-likelihood (2) can be

evaluated recursively through the KF (3).

Let us focus briefly on the updating rule (4). At each point in time, ft is updated so

as to maximize the local fit of the model; i.e. the magnitude of the update depends on the

slope and on the curvature of the likelihood function, and the resulting score-driven filter can be

rationalized as the stochastic analogue of the Gauss–Newton search direction.6 The parameters

in B determine the sensitivity of the time-varying parameters to the score of the conditional

likelihood, and therefore to the information contained in the prediction error. The special case

of constant system matrices is obtained by setting this matrix to 0.

Result 1 Given the model (1)-(2), the score and the information matrix are:

∇t =
1
2

[
Ḟ ′t (Ft ⊗ Ft)

−1vec(vtv′t − Ft)− 2V̇ ′t F
−1
t vt

]
It = 1

2

[
Ḟ ′t (Ft ⊗ Ft)

−1Ḟt + 2V̇ ′t F
−1
t V̇t

]
, t = 1, ..., n,

(6)

where V̇t = ∂vt/∂f
′
t and Ḟt = ∂vec(Ft)/∂f

′
t measure the sensitivity of the prediction error vt

and its variance Ft with respect to ft. Proofs in Appendix A.1.

Notice that all the elements of the information matrix It are computed using information

up to time t − 1. On the other hand, the gradient ∇t contains the current observation yt via

the prediction error vt. The terms V̇t and Ḟt play a key role in the gradient ∇t. They measure

the sensitivity of, respectively, the first and second moment of the state vector with respect

to ft. Together with the variance of the prediction error (Ft) and with the curvature of the

conditional likelihood (proportional to It), they determine the impact that new information,

6Blasques et al. (2015) show that updating the parameters using the score of the likelihood function is optimal
in the sense that it locally reduces the Kullback-Leibler divergence between the true conditional density and
the one implied by the model even when the model is mispecified.
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summarized in the prediction error vt, has on the time-varying parameters. Notice that vt and

Ft are recursively computed by means of the KF (3), while their Jacobian counterparts, V̇t and

Ḟt, are recursively computed through the new filter presented below.

Result 2 The Jacobian counterpart of the KF leads to the following set of expressions:

V̇t = −[(a′t ⊗ IN)Żt + (a′t−1|t−1 ⊗ Zt)Ṫt], t = 1, ..., n,

Ḟt = 2NN(ZtPt ⊗ IN)Żt + 2(Zt ⊗ Zt)Nm(TtPt−1|t−1 ⊗ Im)Ṫt + Ḣt + (Zt ⊗ Zt)Q̇t,
(7)

where Żt = ∂vec(Zt)/∂f
′
t, Ḣt = ∂vec(Ht)/∂f

′
t, Ṫt = ∂vec(Tt)/∂f

′
t and Q̇t = ∂vec(Qt)/∂f

′
t are

the Jacobians of the system matrices with respect to ft, and Nm is a symmetrizer matrix (i.e.,
for any n× n matrix, S, Nnvec(S) = vec[1

2
(S + S ′)]). Proofs in Appendix A.2.

Putting together Results 1 and 2, we have all we need to compute the scaled score st = St∇t

and therefore to recursively estimate the vector ft using the the score-driven filter (4). Such

auxiliary filter runs in parallel with the standard KF (3) as exemplified in the Algorithm

described below.

Algorithm for the score driven state space model
Initialize a0|0, a1, P0|0, P1, f1.
For t = 1, ..., n :

i. evaluate Zt, Tt, Ht, Qt, Żt, Ṫt, Ḣt, Q̇t

ii. compute vt, Ft, V̇t, Ḟt

iii. compute at|t, Pt|t, ∇t It, st
iv. compute ft+1

v. evaluate Zt+1, Tt+1, Ht+1, Qt+1

vi. compute at+1, Pt+1

The vector of parameters θ can be estimated by ML, that is θ̂ = argmax
∑n

t=1 �t(θ). Given

the above algorithm, the evaluation of the log-likelihood function is straightforward and the

maximization can be obtained numerically.7

Remark: the expressions in (7) require the current values of the predictive filter (at and

Pt) and past values of the real time filter (at−1|t−1 and Pt−1|t−1). It is possible to express the

new filter with respect to the predictive filter only but the implied set of recursions are more

cumbersome; see expressions (A.10)-(A.15) in the appendix A.2.

7As in Creal et al. (2013, sec. 2.3) one can conjecture that the usual ML results hold.
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Examples. In Appendix B we provide some examples of popular models with time-varying

parameters that have been used in the literature and that can be analyzed within our frame-

work. In particular we discuss the local-level model with time-varying volatilities used by Stock

and Watson (2007); the autoregressive models with Guassian innovations in Delle Monache and

Petrella (2017) and Blasques et al. (2014) and the vector autoregression with time-varying pa-

rameters by Koop and Korobilis (2013).

2.2 Non-linearity in the system matrices

In many applications it is desirable to constrain the time-varying parameters at each point

in time. For instance, steady state relationships often imply nonlinear relationships between

parameters. Alternatively one might want to impose that the parameters stay in a certain

region (it is the case, for instance, of positive semidefinite covariances or of stationary roots),

or to be exactly equal to given values.

Such constraints must be accounted for when estimating the model. In this context, the

score driven setup provides a clear advantage with respect to alternative methods, including

Bayesian methods, because it provides a general framework to deal with parameter restrictions.

The intuition of the mechanism at play is very simple. The score of the conditional likelihood

is the derivative of the likelihood with respect to the vector of parameters ft. The effect

of these parameters on the score is mediated via the Jacobians (Żt, Ṫt, Ḣt, Q̇t). When the

system matrices (Zt, Tt, Ht, Qt) are a non-linear function of ft, these Jacobians will take this

dependence into account via the chain-rule. In other words, in the score driven framework the

presence of constraints does not add any particular complication, besides the derivation of the

Jacobian matrices. Notably, the model can still be estimated by ML.

Although the exact expression of the Jacobians Żt, Ṫt, Ḣt, Q̇t is model specific, we offer

a flexible expression for dealing with them. Let Mt be a generic system matrix of dimension
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r × c, and decompose this matrix as follows:

vec (Mt) = S0 + S1ψ(S2ft), (8)

where S0 is a rc× 1 vector containing all the time invariant elements in each of the elements of

the system matrixMt, S1 and S2 are selection matrices that select respectively the time-varying

elements of Mt and the sub-vector of ft belonging to Mt. Finally, ψ(·) denotes the mapping

function, often called link function, between ft and the corresponding elements inMt embedding

parameter restrictions. Such function is assumed to be time-invariant, continuous, invertible,

twice differentiable, and its Jacobian matrix is denoted by Ψt. Given the representation (8),

the generic Jacobian matrix Ṁt can be computed as follows:

Ṁt =
∂vec(Mt)

∂f ′t
= S1ΨtS2. (9)

While equations (8)-(9) can be directly used to deal with Zt and Tt, when modelling a generic

covariance, Ωt, it is often useful to decompose this in terms of volatilities and correlations

Ωt = DtRtDt, where Dt is the diagonal matrix containing the standard deviations and Rt is

the correlation matrix.8 Now Rt and Dt can be expressed in the form of (8), Ṙt and Ḋt can

be computed as in (9) and Ω̇t is computed using standard rules of matrix differentiation (see

Appendix E.1).

2.3 Extensions

Our algorithm can be adapted to accommodate data irregularities (like an arbitrary pattern

of missing data or data sampled at different frequencies) and parameters shrinkage. In this

section, we sketch briefly how to treat these cases. In Appendix C we offer a detailed analysis

and also discuss the case of correlated disturbances.

8The case where only the correlations or the volatilities are time-varying can also be dealt with using this
decomposition.
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2.3.1 Missing observations and data sampled at mixed frequencies

When some data are missing the observed vector is represented byWtyt, whereWt is an Nt×N

selection matrix with 1 ≤ Nt ≤ N , meaning that at least one observation is available at time

t. Note that Wt is obtained by eliminating the i − th row from IN when the i − th variable

is missing. In this setting, at each time t the conditional likelihood �t is computed using Nt

observations; i.e. �t = log p(Wtyt|Yt−1, θ). The score is then computed based on this modified

likelihood that only takes into account available information, see Section C.2 for details. Mixed

frequencies do not pose additional challenges, as they involve missing observations and temporal

aggregation.9

2.3.2 Shrinking parameters with a L2 penalty

As the dimension of the system grows, it could be desirable to impose some shrinkage on the

model parameters to avoid an increase in the estimation variance (Hastie et al., 2001). In a

Bayesian framework this is achieved through the prior distribution. In a classical setting, like

the one hereby adopted, shrinkage can be achieved by means of stochastic constraints that lead

to a mixed estimator (Theil and Goldberger, 1961). In this framework actual data are mixed

with artificial observations that are generated by the stochastic constraints.10 Let us consider

for instance the case in which we might want to shrink a linear combination of the parameters

Rtft in a given direction rt. We augment the model with the following artificial observations:

rt = Rtft + ut, ut ∼ N (0,Σt), (10)

where rt, Rt and Σt are known and the random vector ut is Gaussian and uncorrelated with the

other disturbances in the model. The matrix Σt determines the tightness of the constraints, i.e.

9Low frequency indicators can be modeled as a latent process that is observed at regular low frequency
intervals and missing at higher frequency dates. The relation between the observed low frequency variable and
the corresponding (latent) higher frequency indicator depends on whether the variable is a flow or a stock and
on how the variable is transformed before entering the model. The variable can be rewritten as a weighted
average of the unobserved high frequency indicator (Banbura et al., 2013).

10See Kapetanios et al. (2019) for an application to large Vector Autoregressions.
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the degree of shrinkage. For Σt →∞ the constraints vanishes, while for Σt → 0 the constraints

holds exactly.

Recall that the state space model (1) with the score driven system matrices described by

(4) is conditionally Gaussian with conditional likelihood equal to (2). Since ut is Gaussian, the

log-likelihood function for the vector ỹt = (y′t, r
′
t)
′ is equal to:

�pt = log p(ỹt|Yt−1, θ) ∝ −1

2

(
log |Ft|+ v′tF

−1
t vt

)− 1

2

(
log |Σt|+ u′tΣ

−1
t ut

)
. (11)

This expression can be interpreted as a penalized log-likelihood with a quadratic penalty func-

tion. The resulting score mixes the unrestricted score st in (5), which is based on actual data,

with that computed on the basis of the stochastic constraint in (10):

spt = (It +R′tΣ
−1
t Rt)

−1(∇t +R′tΣ
−1
t ut) = (I −ΥtRt)st +Υtut, (12)

where Υt = I−1t R′t(RtI−1t R′t +Σt)
−1. It is easy to see that when Σt →∞ the penalty vanishes

and the score equals st. For more details on the filter and examples see Appendix C.4.

3 A Monte Carlo analysis

Before testing our method on actual data we assess its ability to replicate the features of a

number of data generating processes (DGPs) through a Monte Carlo exercise. The details on

the exercise, including model specifications, tables and graphs are contained in Appendix D.

In what follows we briefly summarize the main results.

We experiment with simple DGPs that feature time variation either in the measurement

or in the transition equation. Moreover, we assess time variation in the coefficients separately

from time variation in the volatilities. The law of motion of the parameters can take six forms.

We start with a baseline case in which we keep the parameters constant over time. We then

move to four cases where the parameters change according to a deterministic process. In case

2 they follow a cyclical pattern determined by a sine function. In cases 3 and 4 they break
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(either once or twice) at discrete points in time. In case 5 they increase for some time before

returning abruptly to their starting levels. Finally, case 6 is the only one in which we let the

parameters vary stochastically, following a persistent AR(1) model.11

We base our assessment on five different statistics, namely the Root Mean Squared Error

(RMSEs), the Mean Absolute Error (MAE), the correlation between actual and estimated

coefficients, the coverage (i.e. percentage of times that the estimated latent states fall in

a given estimated confidence interval) and the number of cases in which a pile-up occurs.12

There are four takeaways from the Monte Carlo exercise. First, for all the DGPs when the

true parameters do not change over time the model correctly estimates them as being constant.

As a result, RMSEs and MAEs are virtually nil, the coverage extremely precise and a pile-up

occurs in about 75 percent of the cases for the models with time-varying volatility and more

than half of the cases for the models with time-varying loadings and AR coefficients.13 Our

estimation method passes an essential test, i.e. it does not generate spurious time variation

in the coefficients when this is not present in the DGP. Second, when the parameters actually

change over time the pile-up problem, which plagues maximum likelihood estimators of models

with time-varying coefficients (Stock and Watson, 1998), is not of primary concern with our

method. The number of instances in which our method incorrectly concludes that there is

no time variation is basically zero in most cases. Third, the model finds it more challenging

to estimate parameters that are subject to sudden breaks. This is not surprising, since our

model is, by construction, designed to detect smooth changes. Fourth, our new filter is rather

conservative in the estimation of the time-varying variances, especially when these are driven

by a near unit root process. However, when time variation is detected, the algorithm yields

11We consider two cases, one with a near unit root process (i.e. with an AR root of 0.99) and a low variance,
one with lower persistence (AR root of 0.97) but substantially higher variance. We obtain very similar results
in these two specifications.

12The last statistics consists of the number of simulations in which the static coefficients that pre-multiply
the score end up being lower than 10−6, which we take as sufficient evidence that the estimated parameters are
effectively zero, i.e. that the model does not detect any time variation.

13For the latter two cases, in an additional 20% of the simulations the estimated parameters are virtually
constant, despite not being classified as a pile-up according to our criterion.
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relatively low RMSEs and MAEs and a satisfactory coverage. We take these results as evidence

that, in the case of time-varying variances, the algorithm needs relatively more evidence of

breaks in the parameters to move away from zero. A larger sample size basically eliminates

the problem.

4 Price dividend ratio, expected returns and expected

dividend growth

In this section, we revisit the relationship between the price dividend ratio, the return on stocks

and dividend growth. This topic provides the ideal setting for score driven state space models.

First, it involves present value relationships that can be conveniently analyzed via state space

models (Binsbergen and Koijen, 2010). Second, there is significant evidence of instability in

regressions of stock returns on the price dividend ratio (Paye and Timmermann, 2006; Lettau

and Nieuwerburgh, 2008), suggesting that a state space model with time-varying parameters

is the appropriate modelling choice. Third, the parameters that link these three objects are

subject to a set of non-linear restrictions that pose a non-trivial challenge for other methods but

can be easily dealt with in our framework. We start by recalling the steady state relationship

between the return on stocks, the price dividend ratio and dividend growth. We then use break

tests to document the presence of structural breaks in the mean of the price dividend ratio.

We then move to specifying a score driven state space model that reconciles this motivating

evidence with slow movements in the steady states of expected returns and of dividend growth.

4.1 Stock return and time-varying steady states

Let Pt and Dt denote stock prices and dividends. From the simple definition of gross return of

an asset it follows that:

Rt+1 ≡ Pt+1 +Dt+1

Pt

=
Dt+1

Dt

Pt+1/Dt+1 + 1

Pt/Dt

. (13)
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Lettau and Nieuwerburgh (2008) show that this implies the following relationship in logs:

pdt = gt − log(expμt − exp gt), (14)

where pdt, μt and gt denote the steady state level of the price dividend ratio, of the return on

stocks and of dividend growth, respectively.14 Equation (14) has two important implications.

First, changes in the steady state of the price dividend ratio reflect either changes in the steady

state of the return on stocks or in the steady state of dividend growth or in both. Second, small

changes in long-run growth (reflected in the steady state of dividend growth) and/or in the

steady state of the return on stocks have large effects on the steady state of the price dividend

ratio.

4.2 Preliminary evidence on parameter instability

We start our empirical exercise by revisiting the evidence presented by Lettau and Nieuwer-

burgh (2008) that the long-run mean of the price dividend ratio is subject to two structural

breaks. We extend their analysis by considering not only the price dividend ratio but also the

return on stocks and dividend growth and by testing for instability in the variance of these

variables. Our analysis is based on annual data between 1873 and 2018. Annual data for the

Standard and Poor Composite Stock Price Index and associated dividends are sourced from

Robert Shiller’s website.15 To account for changes in purchasing power, we deflate total returns

and dividends using data on US CPI, also available from the same source.

We start by testing the null hypothesis of no breaks against the alternative hypotheses of

one, two or three breaks with unknown dates using the Bai and Perron (2003) test.16 The

results of this first battery of tests, reported in the top panel of Table 1, convey two clear

14Lettau and Nieuwerburgh (2008) assume that, at the steady state, the level of the price dividend ratio is
constant (i.e. P/Dt+1 ≈ P/Dt). Moreover, denoting with DY t the steady state dividend yield, equation (14)

implies that DY t = Rt −Gt, consistent with the Gordon model (see e.g. Campbell, 2018, p. 130).
15See http://www.econ.yale.edu/shiller/. Further details on the construction of the data are available

in Shiller (1989)’s Chapter 26.
16We do not go beyond three breaks for two reasons. First, we want to capture large secular changes in the

mean of these series. Second, as discussed below, evidence for more than three breaks is rejected by sequential
break tests.
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messages. First, the null hypothesis of no breaks can not be rejected for returns and dividend

growth.17 The second result is that there is strong evidence of structural breaks in the mean

of the price dividend ratio. Two of the dates for which the Bai and Perron procedure detects a

break (1954 and 1995) are consistent with the findings in Lettau and Nieuwerburgh (2008).18

Evidence of a third break in 1913 is somewhat weaker. In fact, the null hypothesis of two

breaks against the alternative of a third one cannot be rejected on the basis of sequential break

tests (Table 1, central panel). These sequential tests also cannot reject the null that the mean

of the return on stocks and of dividend growth has remained stable over time.

Last, we employ the Nyblom (1989) test, which confronts the null hypothesis of constant

parameters (both mean and variance) with an alternative that the parameters follow a martin-

gale.19 The test detects significant shifts in the mean and volatility of the price dividend ratio

as well as in the volatility of dividend growth. This result casts doubts on the hypothesis of

constant variances maintained by Lettau and Nieuwerburgh (2008) and lends support to the

model with heteroskedastic disturbances in Piatti and Trojani (2017). However, it also con-

firms that shifts in the steady state of the price dividend ratio, ignored by Piatti and Trojani

(2017), are a robust feature of the data.20

This preliminary analysis leaves one question open, that is how to reconcile the evidence of

breaks in the price dividend ratio with the apparent stability of returns and dividend growth,

given that the former is a function of the latter two. Two related answers come to mind. First,

this relationship is non-linear, so that even small changes in μt and gt can generate large swings

17Lack of breaks for dividend growth seems to contradict the results in Timmermann (2001), who finds the
mean of dividend growth to be unstable. We attribute such difference to the fact that he allows for up to
eight structural breaks and uses monthly data. With a high data frequency and a large number of candidate
breaks, the data end up being cut in much narrower sub-samples, and changes in the mean can simply reflect
short-term variations of dividend growth associated with standard business cycles.

18Remarkably, these two dates are identified by all the information criteria of the Bai and Perron test.
19This test is therefore designed to detect gradual changes in parameters rather than discrete breaks.
20After Lettau and Nieuwerburgh (2008) a number of papers have used the deviation of the price dividend

ratio from a trend as a predictor of returns (see e.g., Koijen and Nieuwerburgh, 2011, and Herwartz et al., 2016).
To the extent that also the equilibrium expected rate of return changes over time, such predictive regressions
are misspecified, i.e. they lack a time-varying intercept. Moreover changes in the variances need to be taken
into account.
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in pdt.
21 A second related explanation is that changes in the long-run mean of returns and

dividend growth are overshadowed by the presence of a very volatile transitory component. In

such an environment, when changes in the low frequency component are small and gradual,

state of the art break tests have low power against the alternative of no breaks (Benati, 2007;

Cogley and Sargent, 2005). The changing relationship between the price dividend ratio, returns

and dividend growth could be better captured by a flexible model that allows for gradual shifts

in their long-run mean as well as in their volatility. In the next section, we specify such a

model.

4.3 A score driven present value model with drifting steady states

In this section, we describe the extension of the the Campbell-Shiller approximation introduced

by Lettau and Nieuwerburgh (2008), which allows for time-varying steady states in expected

returns and in expected dividend growth. Taking a first order approximation of (13) around a

time-varying steady state yields:

pdt − pdt � ρt+1(pdt+1 − pdt+1) + (Δdt+1 − gt)− (rt+1 − μt) +Δpdt+1 +Δμt+1 −Δgt+1, (15)

where ρt = exp pdt/(1 + exp pdt) and, through pdt, depends on μt and gt according to (14).

Assuming that pdt, μt, gt and thus ρt are martingales, one can do forward substitution and

take expectations of (15) to obtain22

pdt − pdt �
∞∑
j=1

ρjt(Δdt+j − gt)−
∞∑
j=1

ρjt(rt+j − μt). (16)

21This point is underscored by John Cochrane in “Stock Gyrations”, February, 7th 2018, available at https:
//johnhcochrane.blogspot.com/2018/02/stock-gyrations.html, accessed on the 19th of September 2019.

22The martingale assumption on the steady state log returns and dividend growth (i.e. Et(μt+j) = μt

and Et(gt+j) = gt) is consistent with the specification of the model that we describe below. The additional
assumption that the steady state logP/D ratio is a martingale (i.e. Et(pdt+j) = pdt and Et(ρt+j) = ρt) is, in

general, inconsistent with the martingale assumption on μt and gt, since pdt and ρt are a non-linear function of
the previous two. However, Lettau and Nieuwerburgh (2008) show that the martingale assumptions are satisfied
to a very good approximation for reasonable break processes. Moreover, in line with Lettau and Nieuwerburgh
(2008) we also assume that that deviations from the mean price-dividend ratio are uncorrelated with ρt, i.e.
Et[ρt+j(pdt+j − pdt)] = 0.
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Equation (16) shows that stock prices fall relative to dividends when there is bad news about

future cash flows, or when discount rates (i.e. expected returns) rise. It also implies that the

price dividend ratio should forecast returns and/or dividend growth, especially at long horizons

(Cochrane, 2008b). Most importantly, the presence of shifts in long-run expected returns and

expected dividend growth implies that the sensitivity of pdt − pdt to news about cash flows

and discount rates also changes over time (i.e. the higher the equilibrium level of the price

dividend ratio, the higher ρt).

To take the model to the data one needs to make some additional assumption on expected

returns and expected dividend growth. Binsbergen and Koijen (2010) assume that these ex-

pected values can be modeled as AR(1) processes. Here we depart from their specification and

assume that expected returns and expected dividend growth are the sum of a transitory and a

persistent component. The latter, which constitutes a shift in long-run expected returns and

expected dividend growth, is the key novelty of our model and we discuss it more in detail in

the next sub-section. Specifically, we assume that:

Et(Δdt+1) = gt+1|t + g̃t+1|t (17)

Et(rt+1) = μt+1|t + μ̃t+1|t, (18)

where the equilibrium levels of expected returns and expected dividend growth are defined as

limh→∞ Et(rt+h) = μt+1|t and limh→∞ Et(Δdt+h) = gt+1|t. Using the notation in Binsbergen

and Koijen (2010) we denote the transitory component of the expectations (g̃t+1|t and μ̃t+1|t)

with g̃t and μ̃t and assume that they can be characterized by simple AR(1) models:

g̃t+1 = φgg̃t + εg,t+1 (19)

μ̃t+1 = φμμ̃t + εμ,t+1. (20)

The present value relationship (16) implies that the transitory component of the price dividend
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ratio is related to μ̃t and g̃t:

pdt − pdt|t−1 � −b1,t|t−1μ̃t + b2,t|t−1g̃t (21)

with the following constraints on the parameters:

b1,t|t−1 =
1

1− ρt|t−1φμ

, b2,t|t−1 =
1

1− ρt|t−1φg

. (22)

Hence the loadings of the transitory component of the price dividend ratio are not only time-

varying, but also a non-linear function of (i) the persistence of the transitory components of

expected returns and of expected dividend growth and (ii) of the steady state level of the

price dividend ratio. These restrictions must be imposed exactly when estimating the model,

a challenge that our score driven modeling approach can easily overcome.

The decomposition of dividend growth into the expected dividend growth plus an unex-

pected shock, εd,t+1, provides the first measurement equation:

Δdt+1 − Et(Δdt+1) = εd,t+1. (23)

The second measurement equation is (21), which we augment with a measurement error νt ∼

N (0, σ2
ν) to take into account the approximation error associated with the solution of the

present value model. In the model there are three sources of stochastic variation, namely εd,t,

εg,t and εμ,t, respectively the shock to dividend growth, the shock to expected dividend growth

and the shock to expected returns. It is easy to see that they also map into unexpected changes

in returns. In fact, combining (15) with (21) the unexpected component of returns is obtained:

rt+1 − Et(rt+1) = −ρt+1|tb1,t+1|tεμ,t+1 + ρt+1|tb2,t+1|tεg,t+1 + εd,t+1. (24)
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4.3.1 Slow-moving trends and time-varying risk

We assume that the long-run expected dividend growth and long-run expected returns are

martingales. They are driven by the score of the conditional likelihood:

μt+1|t = μt|t−1 + bμsμ,t (25)

gt+1|t = gt|t−1 + bgsg,t, (26)

where sμ,t sg,t are the appropriate elements of the score vector. The steady states, μt|t−1 and

gt|t−1, are therefore updated (through the scaled score) using information on dividend growth

and on the price dividend ratio, as highlighted by equation (14), as well as the present value

restrictions embodied in equation (21) which imply that long-run returns and dividend growth

can also change, through ρt|t−1, the sensitivity of the transitory components of price dividend

ratio, pdt − pdt|t−1, to expected returns and dividend growth.

Last, we assume that the innovations of the model are normally distributed with time-

varying covariances that are themselves driven by the score. Formally, (εd,t, εg,t, εμ,t)
′ ∼

N (
0,Ωt|t−1

)
. We decompose Ωt|t−1 = Dt|t−1Rt|t−1Dt|t−1 where Rt|t−1 denotes the time varying

correlations among the disturbances in the model and Dt|t−1 = diag
[
σd,t|t−1, σg,t|t−1, σμ,t|t−1

]
.

Whereas the three shocks (εd,t, εμ,t, εg,t) could be all correlated, as highlighted by Cochrane

(2008a) not all elements of the covariance matrix can be separately identified. In Appendix

E.2 we show that, in order to identify the model, one restriction needs to be imposed on the

correlations among the innovations of the model. In the application, we follow Binsbergen

and Koijen (2010) and Rytchkov (2012) and assume that the measurement error in dividend

growth (εd,t) and the stochastic disturbance in expected dividend growth (εg,t) are uncorrelated

(i.e. Corr(εg,t, εd,t) = 0). In practice, we take advantage of the one-to-one mapping between

the correlations and the partial correlations (see, e.g., Joe, 2006).23 This allows us to model

each of the partial correlations separately (with the only constraint that each of them has to

23See Appendix C.3 for additional details.
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lay in the unit circle) and yet guarantees a well-defined correlation matrix in every period.

Modeling the partial correlation has the additional advantage that we can easily impose that

one of the correlation coefficients is always zero. In fact, it is easy to show that, ordering the

innovations so that the restriction is placed on the first column of the correlation matrix, one

has that �dg,t = πdg,t (where �ij and πij are, respectively, the generic ij element of the cor-

relation and partial correlation matrix) and the identification restriction simply requires that

πdg,t = 0, ∀t. Therefore, through the Jacobian, the algorithm translates the score of the likeli-

hood with respect to the correlation matrix into the appropriate updating of the unrestricted

partial correlations.

4.3.2 State Space Representation and estimation

Let yt = (Δdt, pdt)
′ be the vector of observed variables and αt = (1, g̃t, μ̃t, g̃t−1, εd,t, εg,t, εμ,t)′ be

the state vector. The measurement equations of the model are (21)-(23). The law of motion

of the transitory components (19)-(20) as well as the definition of the innovations of the model

constitute the transition equations.24 The state space representation of the model is:

yt = Ztαt + εt, εt ∼ N (0, H),

αt = Tαt−1 + ηt, ηt ∼ N (0, Qt),

where εt = (0, νt)
′, ηt = Sεt, S is a selection matrix, and Qt = SΩt|t−1S ′. All the details on the

state space representation can be found in Appendix E.1. The time-varying elements of the

system matrices Zt and Qt are collected in the vector:

ft+1 = (μt+1|t, gt+1|t, log σd,t+1|t, log σg,t+1|t, log σμ,t+1|t, atanhπ
dμ
t+1|t, atanhπ

gμ
t+1|t)

′

where atanh(·) denotes the inverse hyperbolic tangent so that the partial correlations πij,t ∈

(−1, 1), ∀t. The law of motion of ft+1 is a restricted version of (4). Specifically, we assume A

24Notice that the measurement equation for the price dividend ratio and for dividend growth imply a mea-
surement equation for returns (24), which is therefore redundant for the estimation of the model (see also,
Binsbergen and Koijen, 2010).
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and B to be diagonal and we further restrict some of the elements of c and A in accordance

with the random walk specification for the slow moving trends discussed in section 4.3.1. The

model likelihood is computed using the Kalman filter, coupled with the updating algorithm

for the score driven parameters as discussed in section 2 and parameters are easily estimated

by maximising this likelihood. Confidence intervals can be obtained following Blasques et al.

(2016). Appendix E.1 details the non-linear mapping between the score driven time-varying

parameters and the system matrices and the associated Jacobians that are required in the score

driven filter.

5 Results

Parameter estimates. The estimation results are shown in Table 2, which is organized

in three columns. The one on the left presents the results for the autoregressive roots of

the transitory components of expected returns and dividend growth (φμ and φg), the average

volatility and correlations of the shocks in the model over the entire sample as well as the

variance of the measurement error in the price dividend equation. Expected returns have a

root of 0.829, which implies a half life of 4.7 years. Expected dividend growth is less persistent,

with an autoregressive root of 0.345, implying a half life of 1.7. These numbers are, as expected,

lower than those estimated by Binsbergen and Koijen (2010) and Piatti and Trojani (2017), as

part of the persistence is captured in our case by the shifts in the steady states. The volatility

and correlation for the innovations of the model map into an average volatility of the shocks

to returns of roughly 0.18 and correlation between the innovations to the return on stocks and

expected returns in a range between -0.6 and -0.7, in line with the estimates in Carvalho et al.

(2018). The variance of the measurement error of the price dividend ratio is negligible. The

second column reports the autoregressive roots of the five time-varying parameters that are

modelled as stationary processes, namely the three volatilities and the partial correlations. All

of them are very persistent, but far from having a unit root, justifying our modeling choice.
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The third column presents the seven loadings on the score and the smoothing coefficient of

the Hessian term. The most interesting result regards the loadings of the time-varying steady

states. The long-run mean of expected returns has a loading of 0.151 on the likelihood score,

three times as large as that of dividend growth (0.052). This is a signal that the low frequency

component of expected returns exhibits much more time variation than that of dividend growth.

Volatilities and partial correlations, instead, have similar properties. The main takeaway of

these estimation results is that expected returns are more predictable than expected dividend

growth. They are characterized by a slowly changing steady state, as well as by a persistent

transitory component.

Filtered steady states. Figure 1 shows returns and dividend growth together with the

expected components. For both series, movements in the long-run steady states are completely

dominated by very volatile transitory shocks, and seem relatively flat. As we shall see below,

this is in fact not the case. Consistently with the parameter estimates in Table 2, the transitory

component of expected dividend growth (g̃t) is more volatile and falls considerably in recessions.

It is worth stressing that its fall in the 2008 recession is not exceptional by historical standards

and is in fact significantly milder than those observed in 1929 and during WWII.

Figure 2 shows the estimated trend components. These are the central results of our

empirical analysis. In the left panel we plot μt|t−1 and gt|t−1, which are estimated in our model

as score driven martingales. It is clear that what seemed to be a flat line, i.e. the permanent

component of expected returns, is in fact a downward sloping trend. It starts off at around 9

percent at the end of the 19th century and fluctuates between 7 and 8 percent until the 50s.

Thereafter it experiences two sharp falls: one between the 50s and the 70s, and one in the 90s,

the former being interrupted by the stock market crash in 1973 and the latter by the burst of

the dotcom bubble in 2000. At the end of the sample, the long-run expected return on stocks

stands at around 4 percent, less than half of its initial value. The steady state of expected

dividend growth has also fallen slightly over the sample, from around 2 percent to 1.3 percent
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at the turn of the century, to then rebound to 1.5 percent. This minor fall in long-run dividend

growth is quantitatively consistent with the rise of alternative forms of payout (such as shares

repurchases and issuance) which have become quantitatively more important since the 90s as

documented by Boudoukh et al. (2007). Overall, however, it has remained more stable, as it

could be expected, given the lower loading on the score displayed in Table 2. The right hand

side panel shows the implications of these results for the steady state of the price dividend ratio.

Our estimate of pdt has an upward trend over the whole sample, with three large changes, one

early in the sample, one after WWII and one in the Nineties. These are indeed the dates for

which the Bai and Perron test detects significant structural breaks. However, structural break

tests are unable to offer a structural explanation for such an upward trend in valuations, nor

can they provide a narrative behind these episodes. Our method reveals that these long waves

of strong valuations have largely built on falling expected returns. The rally of stock prices

in the 90s, in particular, was not associated with improving cash flows prospects, but with a

sharp fall in discount rates. These results formalize and provide evidence for the intuition put

forward by Fama and French. In their seminal paper on the equity premium (Fama and French,

2002) they notice that, between 1950 and 2000, realized average stock returns in excess of the

riskless interest rate have been substantially higher than the equity risk premium. Given the

relative stationarity of dividend growth, they argue that realized capital gains must have come

from a fall in discount rates. Our empirical analysis quantifies such shifts in long-run discount

rates and identifies their timing within a formal model.

Dynamic price dividend ratio decompositions. The left panel of Figure 3 decomposes

the cyclical component of the price dividend ratio in a linear combination of the transitory

components of expected returns and of expected dividend growth, based on equation (21).

The result is quite striking. First, most of the cyclical variation in valuations is due to changes

in expected returns. In particular, high stock prices in the 60s and in the 90s were due to a

slow fall (of transitory nature) in the discount rate, which eventually reverted back towards its
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mean in the bear markets of the early 70s and early 2000s. This finding is consistent with the

relatively higher persistence of μ̃t compared to g̃t (AR root of 0.829 versus 0.345) as well as with

the fact that changes in expected dividends affect both prices as well as actual dividends, with

relative little impact on valuations (Cochrane, 2011; Campbell and Ammer, 1993). Second, the

role of cash flows is episodic but non-negligible. A fall in cash flows expectations, for instance,

contributed as much as discount rates to the stock market crash in 1929 and in WWII. It had

an even larger role in explaining the 2008 crash.

The right hand side panel decomposes the (one step ahead) conditional variance of the the

price dividend ratio.25 At short horizons, dividend and returns shocks contribute in almost

equal parts to shifts in valuations. The reason for the stark difference between these two

decompositions lies in the frequency on which they focus. At high frequencies, shocks to cash

flows have the power to affect valuations (which explains their role in the right hand side graph),

but their effect dies out quickly. In the medium run valuations are dominated by discount rate

shocks (which is the message of the left hand side chart).

Term Structure of expected returns and dividend growth. Iterating forward equa-

tions (19)-(20) we can obtain an expression for expected returns and expected dividend growth

at a given horizon n:

μ
(n)
t =

1

n
Et

[
n∑

j=1

rt+j

]
= μt+1|t +

1

n

1− φn
μ

1− φμ

μ̃t (27)
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(n)
t =

1

n
Et

[
n∑
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Δdt+j

]
= gt+1|t +

1

n

1− φn
g

1− φg

g̃t. (28)

In Figure 4, left hand side panel, we plot expected returns at the ten years horizon (blue dashed

line) as well as the slope of the term structure of expected returns (red solid line), that is the

difference between expected returns ten and two years out. At low frequencies, expected returns

inherit the properties of the shifting steady state μ̄t|t−1: they fall from an average of around 7

percent in the first part of the sample to around 2 percent at the end of the sample. The slope,

25Details on this decomposition are reported in appendix E.4.
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despite some short run movements, fluctuates around zero, suggesting that over this period

the whole term structure of discount rates has shifted downwards. The level and the slope are

clearly negatively correlated. This negative correlation is driven by a number of a recessionary

episodes in which long term discount rates rise but the slope dips, i.e. discount rates rise more

sharply at short than at long maturities. It is also directly connected to the predictability of

returns: high expected returns today predict low expected returns tomorrow.26 The right hand

side panel shows the level and the slope of the term structure of expected dividend growth.

Long-term expectations are rather smooth (much more than those of expected returns) and

have remained relatively stable at 2 percent,27 consistently with the relative stability of gt|t−1.

The slope, on the other hand, is countercyclical and quite volatile fluctuating between minus

10 to 10 percent, a range that is almost five times as wide as that in which the slope of expected

returns moves. Indeed, as shown in table 2, the mean volatility of shocks to g̃t is almost four

times as high as that of μ̃t (0.083 versus 0.024) and this is reflected in the volatility of expected

annual cash flows. This slope has some notable peaks, corresponding to sharp recessions, such

as the post WWI recession, the Great Depression, the 1973 recession and more recently the

Great Financial Crisis. Therefore, the term structure of dividend growth highlights that short-

term cash flows expectations fall substantially during recessions, but are anticipated to mean

revert relatively quickly. The countercyclicality of the slope of the term structure of dividend

growth expectations is in line with the finding of van Binsbergen et al. (2013) who document

similar properties from dividend derivatives for the post 2003 sample. In Appendix E we look

more in detail at some specific historical stock market corrections.28 We find that discount

26These findings stand partially in contrast with those in Piatti and Trojani (2017) who keep the steady state
of expected returns constant. Keeping the steady state of expected returns constant has two consequences.
First, it constraints long-term expectations to remain relatively stable, the more the longer the horizon that
one considers. This is hard to reconcile with the secular upward trend in the price dividend ratio. Second, in a
model with constant steady states the terminal point of the term structure is fixed. This implies that a model
with constant steady states ends up overstating the predictability of returns, especially at very long horizons.

27Few rare exceptions when pessimistic expectations on cash flows persisted for more than 10 years include
the height of the Great Depression, the oil price shock of 1973 and the Great Financial Crisis.

28In Figure E.5 for these three historical episodes we plot the whole term structure of expected returns and
expected dividend growth for the year before the recession, the peak of the recession and the year after the
recession.
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rates shocks, especially at the short end of the curve, contributed greatly to the severity of

the recessions in 1929 and 2008, while they played a relatively minor role in the 2001 recession

episode. These results are consistent with the ones of Campbell et al. (2013).

Time-varying risk. Our model also allows us to analyze how the conditional second

moments have changed over time. We refer to Appendix E.5 for the detailed analysis but

summarize here two interesting findings. First, the conditional correlation between expected

and actual returns is robustly negative over the whole sample. This speaks directly to the

notion that actual returns are predictable due to mean reversion: surprisingly high returns

today correspond to low future returns. This correlation falls in our sample, from -0.60 to -0.75,

indicating increasing predictability in the last two decades, and generally falls in recessions:

bear markets predict higher future returns. Second, throughout the sample we find that the

conditional variance of stock returns falls with the investment horizon. This confirms the

results in Campbell and Viceira (2005) and Carvalho et al. (2018) that the stock market poses

less risk for the long-run investor than for the short-run investor (see, e.g., Siegel, 2008).

6 Expected excess returns and the equilibrium real rate

The central result of our empirical analysis is that the long-run expected return on equity

has fallen over time. In this section, we elaborate further on this finding by splitting long-

run expected returns in a riskless component and a risk premium. The riskless component is

closely related to the so called natural rate of interest (r-star), a concept that dates back to

Knut Wicksell but that has been more recently popularized by Laubach and Williams (2003).

A wealth of research has shown that the natural rate has fallen dramatically over time not only

in the US but also in a set of advanced countries (Holston et al., 2017, and Del Negro et al.,

2019).29

29Three main competing explanations have been put forward to rationalize the fall in equilibrium real rate:
a permanent decline in the rate of growth of the economy (secular stagnation), an increase in desired savings
due to aging population (saving glut) and a rise in economic risk (or a fall in its tolerance) that has raised
the liquidity and safety premium of safe assets like US Treasuries, see Del Negro et al. (2017) for an extensive
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We follow Cochrane (2008b) and rewrite the present value decomposition of the price div-

idend ratio in equation (16) in terms of excess returns, by simply subtracting a measure of

the safe real rate of interest (let us call it rf ) from both expected discounted returns and ex-

pected discounted dividend growth.30 Our baseline model can then be re-estimated using as

observable variables for the measurement equations the price dividend ratio and the difference

between dividend growth and rft .
31 Besides this simple modification, the model is essentially

unchanged, apart from the fact that, following the suggestion in Campbell and Thompson

(2008), we impose the restriction that the long run equity premium needs to be always pos-

itive.32 This alternative model provides us with three time series, pdt|t−1, g
ex
t|t−1, μ

ex
t|t−1 that

measure, respectively, the time-varying equilibrium price to dividend ratio for this alternative

model specification, the long-run expected excess dividend growth (i.e. the long-run expected

dividend growth minus the equilibrium riskless real rate) and the steady state equity risk pre-

mium or excess return. The first (comforting) result of this exercise is that the estimate of the

equilibrium price to dividend ratio that we retrieve using this alternative specification is very

close to the one obtained in the baseline model in Section 4.33 Subtracting the riskless real

rate turned out to be indeed an innocuous econometric twist. Yet the novelty is that we now

have a measure of the equilibrium excess returns μex
t|t−1. Subtracting this from μt|t−1 we can

then obtain a measure of the riskless long-run real rate, rt|t−1 = μt|t−1 − μex
t|t−1.

34

The left panel of figure 5 shows that the long-run expected excess return, μex
t|t−1, has only

slightly fallen, from around 4 percent at the beginning of the 20th century, to reach a minimum

of 3 percent in 2000 and to rebound thereafter to around 3.5 percent. These numbers are in

discussion.
30Returns and dividend growth enter the decomposition with opposite signs, so that rft cancels out leaving

unaffected the price dividend ratio.
31A long annual series of the risk free rate is taken from Amit Goyal’s website http://www.hec.unil.ch/

agoyal/ (see Welch and Goyal, 2008, for additional details).
32This constraint does not seem to play an important role as the estimated values for the long-run excess

return are always far from zero.
33See Figure E.8 in Appendix E.6 for a comparison.
34Alternatively one could compute the implied riskless real rate as rt|t−1 = gt|t−1 − gext|t−1. The two offer a

similar picture, as we show in the Figure E.8 in Appendix E.6. Figure 5 reports the average between these two
alternative measures.
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the ballpark of the estimates provided by Avdis and Wachter (2017) who report an annual

equity premium of 3.86 per cent in the post WWII period and of around 4.5 in a longer sample

(1927-2011) as well as with the estimate of the equity risk premium (between 2.6 percent and

4.3 percent) for the period 1950-2000 in Fama and French (2002). These results are also in

line with Greenwald et al. (2019) who find that the fall in the equity premium played a limited

role in the overall fall in the equilibrium rate of return on stocks after the 80s. We add to their

analysis by showing that the trend in valuations is almost entirely driven by the fall in the

long-run riskless rate. Moreover, the uptick in the equity premium in the 90s, albeit modest

in size, is qualitatively in line with the narrative in Farhi and Gourio (2018).

The implied long-run natural rate of interest rt, our measure of r-star, has remained stable

(between 3 and 4 percent) for about a century until 1960. It has then fallen by 1 full percentage

point in the 60s, and by 2 percentage points in the 90s. Its terminal estimate is only slightly

above zero. The sudden fall in the equilibrium rate of interest after the 60s is also documented,

with a completely different method, by Del Negro et al. (2019). The behaviour of our measure

of r-star is qualitatively in line with that of Laubach and Williams (2003) and Holston et al.

(2017), also plotted in the chart.35

Concluding, our results confirm that the natural rate of interest has fallen substantially

over the last three decades, but add to previous studies by drawing a clear link between this

secular trend and the increase in stock valuations (Caballero et al., 2017). These results bear

important implications for the conduct of monetary policy. In fact, as highlighted by Williams

(2019), in a world of low r-star “central banks will be grappling with the challenges of life

near the Zero Lower Bound (ZLB), which is why its so critical to consider how the ZLB alters

strategies related to monetary policy.”

35Quantitatively, our measures are lower in the 60s and 70s. In defence of our results we point out that,
given our estimate of the expected return on equity, the level of r-star implied by the Laubach and Williams
(2003) model prior to the 90s would require a level of the equity risk premium substantially lower than what is
typically found in the literature.
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7 Conclusions

State space models with time-varying parameters can help us better understanding the co-

movement in macro financial aggregates, in a world in which returns, long-run growth and asset

valuations appear to have undergone long-lasting shifts. These models present computational

as well as analytical challenges. In this paper we propose a method for analyzing state space

models with time-varying system matrices where the parameters are driven by the score of the

conditional likelihood. We derive a new set of recursions that, running in parallel with the

KF, update at each point in time both the vector of TVP and the latent states. The method

can easily incorporate in the estimation a broad class of parameter constraints. These are

taken into account directly in the estimation algorithm through a Jacobian function, without

the need for rejection sampling or complicated filtering techniques. A Monte Carlo analysis

provides support for the proposed method. Recent empirical analyses that use our method also

testify its usefulness (Delle Monache et al., 2016; Buccheri et al., 2018).

We have then used this framework to fill a gap in the literature that studies the relationship

between the price dividend ratio, the expected return on stocks and expected dividend growth

in present value models. Our estimates reveal that the secular upward trend in the price

dividend ratio, so far unexplained in the literature, is associated with a persistent decline

(from 9 to 4 percent) of the long-run expected return on stocks. A decomposition into a

riskless component and a risk premium further reveals that most of this decline (four percentage

points) is accounted for by the riskless component (i.e. the natural rate of interest, r-star),

that is virtually zero at the end of our sample. The long-term equity risk premium has instead

remained relatively stable over the past 150 years.
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Table 1: Structural Break Tests

rt Δdt pdt

SupFT (k)

k=1 0.954 0.458 48.836∗∗∗

[1921] [1996] [1991]
k=2 1.078 0.365 49.804∗∗∗

[1921; 1962] [1918; 1944] [1954; 1995]
k=3 1.619 0.488 35.862∗∗∗

[1921; 1960; 1982] [1896; 1918; 1944] [1913; 1954; 1995]

SupFT (k + 1|k)
k=2 1.676 0.233 14.896∗∗∗

k=3 2.229 0.846 2.227

Udmax 1.619 0.488 49.804∗∗∗

Nyblom Test

μ 0.023 0.057 7.401∗∗∗

σ2 0.319 0.693∗∗ 2.608∗∗∗

Joint Lc 0.348 0.750 7.873∗∗∗

Note. Table 1 reports the results of a number of structural breaks tests applied to the return on

stocks, to dividend growth and to the price dividend ratio for the full sample 1873− 2018. The upper

panel (SupFT (k)) reports the results of the Bai and Perron (2003) test where null hypothesis of no

breaks is tested against the alternatives of k = 1, 2, or 3 breaks. Dates in square brackets are the

most likely break date(s) for each of the specifications. The central panel (SupFT (k+1|k)) shows the
results of the Bai and Perron (2003) test of k breaks against the alternative of k + 1 breaks. The Ud

max statistics is the result of testing the null hypothesis of absence of breaks against the alternative

of an unknown number of breaks. The bottom panel reports the Nyblom (1989) test, as described in

Hansen (1992). For each variable yt we specify the following model: yt = μ+ σεt, where εt is a white

noise process, and test the null hypothesis that either μ or σ are constant against the alternative that

they evolve as random walks. In the last row we report the results of a joint test that both μ and

σ are constant rather than martingales. The symbols ∗/∗∗/∗∗∗ indicate significance at the 10/5/1%

level.
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Table 2: Model Estimation Results

φμ 0.829 γμ 0.151
[0.010] [0.010]

φg 0.345 γg 0.052
[0.010] [0.010]

σ̄d 0.075 aσd
0.881 bσd

0.015
[0.074; 0.083] [0.026] [0.002]

σ̄g 0.083 aσg 0.899 bσg 0.012
[0.082; 0.127] [0.050] [0.004]

σ̄μ 0.024 aσμ 0.902 bσμ 0.014
[0.023; 0.040] [0.040] [0.004]

ρ̄d,μ 0.339 aπd,μ
0.820 bπd,μ

0.013
[0.280; 0.371] [0.068] [0.003]

ρ̄g,μ -0.232 aπg,μ 0.844 bπg,μ 0.017
[-0.253; -0.130] [0.040] [0.003]

σ2
ν 0.001 κh 0.020

[0.0005] [0.001]

Log Lik. 311.567

Note. Table 2 reports parameter estimates for our baseline model. In the first two entries of the first

column we report the estimates of the autoregressive coefficients of expected returns and expected

dividend growth (φμ and φg). Then we show the average (over the whole sample) estimates of the

volatilities (σ̄d, σ̄g and σ̄μ) and correlations (ρ̄d,μ and ρ̄g,μ) that form the matrix Qt in the state space

model. Finally, we report the estimated volatility of the measurement error for the price dividend

ratio. The second and third columns show the estimates of the coefficients that enter the law of motion

of the score driven time-varying processes: ft+1 = Aft + Bst where A and B are diagonal matrices.

Recall that the first two elements of ft are martingales. This implies that the first two elements of the

diagonal of A are zeros. Estimates for the remaining five entries are reported in the second column of

this table. In the third column we report the seven elements that form the diagonal of B, that is the

loadings on the likelihood score, and the smoothing coefficient applied to the Hessian term (κh). For

each coefficient we report in square brackets the associated standard error. For the average volatilities

and correlations in the first column we report the 68% confidence interval from 1000 simulations of

the model (calculated as in Blasques et al., 2016).
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Figure 1: Expected Returns and Expected Dividend Growth
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Note. The panel on the left of Figure 1 shows the return on stocks (rt), expected returns (Et−1(rt)),
and the long-run component of expected returns (μ̄t|t−1). The panel on the right reports dividend
growth (Δdt), together with expected dividend growth (Et−1(Δdt)) and the long-run component
of expected dividend growth (ḡt|t−1). In both panels the colored bands denote the 68% confidence
interval. Vertical shadows indicate recessions as identified by the National Bureau of Economic
Research (NBER).

Figure 2: Long-run Expected Returns, Expected Dividend Growth and Price-
Dividend Ratio
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Note. The panel on the left of Figure 2 shows long-run expected returns (μt|t−1, continuous blue
line) and long-run expected dividend growth (gt|t−1, broken red line). The implied long-run price
dividend ratio, obtained from μt|t−1 and gt|t−1 on the basis of equation (14), is shown in the panel
on the right (green broken line) together with the actual level of the (log) price dividend ratio
(black solid line). Bands around the estimates correspond to the 68% confidence interval. They
are obtained through simulation, as discussed in Blasques et al. (2016). Vertical shadows indicate
recessions as identified by the National Bureau of Economic Research (NBER).
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Figure 3: Price Dividend Ratio Decompositions
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Note. The panel on the left of Figure 3 reports the decomposition of the transitory component
of the price dividend ratio into the contribution of the transitory components of, respectively,
expected returns and expected dividend growth according to equation (21). The panel on the
right shows the decomposition of the conditional variance of the transitory component of the price
dividend ratio into the contribution of the shocks to expected returns and of the shocks to ex-
pected dividend growth. To obtain this latter decomposition notice that equation (21) implies that
V art(pdt+1 − pdt+1|t) = b21,t+1|tVart(ε

μ
t+1) + b22,t+1|tVart

(
εgt+1

) − 2b1,t+1|tb2,t+1|tCovt(ε
μ
t+1, ε

g
t+1).

The covariance term is split equally between the return and the dividend growth components, as
in Piatti and Trojani (2017). Vertical shadows indicate recessions as identified by the National
Bureau of Economic Research (NBER).

Figure 4: Term Structure of Expected Returns and Expected Dividend Growth
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Note. Figure 4 reports with a broken blue line the level (i.e. 10 years) and with a continuous red
line the slope (i.e 10 year minus 2 years) of conditional expected returns (panel on the left) and of
conditional expected dividend growth (panel on the right). Vertical shadows indicate recessions as
identified by the National Bureau of Economic Research (NBER).
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Figure 5: Long-Run Excess Return on Stocks and Long-Run Riskless Rate
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Note. The panel on the left of Figure 5 reports in blue the long-run expected return on stocks
(μt|t−1) estimated using the baseline model specification described in Section 4 and in red the long
run equity premium (μex

t|t−1) estimated as described in Section 6. The panel on the right shows (blue

line) the long-run real riskless rate constructed as rt|t−1 = 0.5(μt|t−1−μex
t|t−1)+0.5(gt|t−1−gext|t−1).

The panel on the right also shows two alternative measures of r-star for the US, as estimated
in Laubach and Williams (2003) denoted with “LW” and in Holston et al. (2017) denoted with
“HLW”. Vertical shadows indicate recessions as identified by the National Bureau of Economic
Research (NBER).
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A Proofs

We follow the notation and the results in Abadir and Magnus (2005, ch. 13). Given a N ×m

matrix X, vec(X) is the vector obtained by stacking the columns of X one underneath the

other. The Nm × Nm commutation matrix CN,m is such that CN,mvec(X) = vec(X ′). For

N = m the m2 ×m2 commutation matrix is denoted by Cm. The identity matrix of order k is

denoted by Ik, and ‘⊗’ is the Kronecker product. Given a square matrix U , the symmetrizer

matrix is Nn = 1
2
(In2 + Cn) and Nnvec(U) = vec

[
1
2
(U + U ′)

]
.

A.1 Gradient and information matrix

The gradient vector is

∇t =

(
∂�t
∂f ′t

)′
= −1

2

[
∂ log |Ft|
∂f ′t

+
∂v′tF

−1
t vt

∂f ′t

]′
= −1

2

[
1

|Ft|
∂|Ft|

∂vec(Ft)′
∂vec(Ft)

∂f ′t
+
∂v′tF

−1
t vt

∂vt

∂vt
∂f ′t

+
∂v′tF

−1
t vt

∂vec(F−1t )′
∂vec(F−1t )

∂vec(Ft)′
∂vec(Ft)

∂f ′t

]′
= −1

2

[
vec(F−1t )′Ḟt + 2v′tF

−1
t V̇t − (v′t ⊗ v′t)(F

−1
t ⊗ F−1t )Ḟt

]′
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[
Ḟ ′t (F
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−1
t ⊗ F−1t )vec(Ft)− 2V̇ ′t F

−1
t vt
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=

1

2

[
Ḟ ′t (F

−1
t ⊗ F−1t )vec(vtv

′
t − Ft)− 2V̇ ′t F

−1
t vt

]
. (A.1)

We now compute the information matrix as the expected value of the Hessian matrix

It = −Et

[
∂2�t
∂ft∂f ′t

]
. (A.2)

From the third line of (A.1) we can write that

∇t = −1

2
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Ḟ ′t [vec(F

−1
t )− vec(F−1t vtv

′
tF
−1
t )] + 2V̇ ′t F
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t vt
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. (A.3)
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The negative Hessian is equal to:

− ∂2�t
∂ft∂f ′t

=
1

2

∂Φt

∂f ′t
+
∂vec(V̇ ′t F

−1
t vt)

∂vec(V̇ ′t )′
∂vec(V̇ ′t )
∂f ′t

(A.4)
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∂f ′t
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−1
t V̇t, (A.5)

where Φt = Ḟ ′t (IN ⊗ F−1t )vec(IN − vtv
′
tF
−1
t ). Let us now compute the following Jacobian:
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where F̈t =
∂vec(Ḟ ′

t )

∂f ′
t

. Putting together (A.5) and (A.6) we obtain the following expression:
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[vec(IN − vtv

′
tF
−1
t )′(IN ⊗ F−1t )⊗ IN ]F̈t − 1

2

[
vec(IN − vtv

′
tF
−1
t )′ ⊗ Ḟ ′t
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where V̈t =
∂vec(V̇ ′

t )

∂f ′
t

. Following Harvey (1989, p.141), taking the conditional expectation

of (A.7) the fourth and the seventh term in (A.7) are the only nonzero elements and the

information matrix is equal to

It = 1

2
Ḟ ′t

(
F−1t ⊗ F−1t

)
Ḟt + V̇ ′t F

−1
t V̇t. (A.8)

A.2 Jacobians of the Kalman filter

Let us write the KF recursions (3) in terms of the predictive filter:

vt = yt − Ztat, Ft = ZtPtZ
′
t +Ht,

Kt = Tt+1PtZ
′
tF
−1
t , Lt = Tt+1 −KtZt,

at+1 = Tt+1at +Ktvt Pt+1 = Tt+1PtL
′
t +Qt+1, t = 1, ..., n.

(A.9)
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Given the model specific Jacobian matrices:

Żt =
∂vec(Zt)

∂f ′t
, Ḣt =

∂vec(Ht)

∂f ′t
, Ṫt =

∂vec(Tt)

∂f ′t
, Q̇t =

∂vec(Qt)

∂f ′t
,

we compute the following Jacobian matrices:

V̇t =
∂vt
∂f ′t

=

[
∂vt

∂vec(Zt)′
∂vec(Zt)

∂f ′t
+
∂vt
∂a′t

∂at
∂f ′t

]
= −[(a′t ⊗ IN)Żt + ZtȦt]. (A.10)
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∂vec(Ft)

∂f ′t
=

∂vec(Ft)

∂vec(Zt)′
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∂f ′t
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∂vec(Pt)′
∂vec(Pt)

∂f ′t
+ Ḣt

= 2NN(ZtPt ⊗ IN)Żt + (Zt ⊗ Zt)Ṗt + Ḣt. (A.11)
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∂vec(Kt)

∂f ′t+1

=
∂vec(Kt)

∂vec(Tt+1)′
∂vec(Tt+1)

∂f ′t+1

= (F−1t ZtPt ⊗ Im)Ṫt+1. (A.12)

L̇t =
∂vec(Lt)
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=
∂vec(Lt)
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∂vec(Kt)

∂f ′t+1

= Ṫt+1 − (Z ′t ⊗ Im)K̇t. (A.13)
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∂at+1
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=
∂Tt+1at

∂vec(Tt+1)′
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∂f ′t+1

+
∂Ktvt

∂vec(Kt)′
∂vec(Kt)

∂f ′t+1

= (a′t ⊗ Im)Ṫt+1 + (v′t ⊗ Im)K̇t. (A.14)

Ṗt+1 =
∂vec(Pt+1)

∂f ′t+1

=
∂vec(Tt+1PtL

′
t)

∂vec(Tt+1)′
∂vec(Tt+1)

∂f ′t+1

+
∂vec(Tt+1PtL

′
t)

∂vec(L′t)′
∂vec(L′t)
∂vec(Lt)′

∂vec(Lt)

∂f ′t+1

+ Q̇t+1

= (LtPt ⊗ Im)Ṫt+1 + (Im ⊗ Tt+1Pt)CmL̇t + Q̇t+1. (A.15)

Plugging (A.12) in (A.14) we obtain

Ȧt+1 = [(a′t ⊗ Im) + (v′tF
−1
t ZtPt ⊗ Im)]Ṫt+1

= [(a′t + v′tF
−1
t ZtPt)⊗ Im]Ṫt+1

= (a′t|t ⊗ Im)Ṫt+1. (A.16)
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Plugging (A.12) and (A.13) in (A.15) we obtain

Ṗt+1 = (LtPt ⊗ Im)Ṫt+1 + (Im ⊗ Tt+1Pt)Cm[Im2 − (Z ′tF
−1
t ZtPt ⊗ Im)]Ṫt+1 + Q̇t+1

= (LtPt ⊗ Im)Ṫt+1 + Cm[(Tt+1Pt ⊗ Im)− (Tt+1PtZ
′
tF
−1
t ZtPt ⊗ Im)]Ṫt+1 + Q̇t+1

= (LtPt ⊗ Im)Ṫt+1 + Cm[(Tt+1Pt − Tt+1PtZ
′
tF
−1
t ZtPt)⊗ Im]Ṫt+1 + Q̇t+1

= (Tt+1Pt|t ⊗ Im)Ṫt+1 + Cm(Tt+1Pt|t ⊗ Im)Ṫt+1 + Q̇t+1

= 2Nm(Tt+1Pt|t ⊗ Im)Ṫt+1 + Q̇t+1. (A.17)

Note that expressions (A.10), (A.11), (A.16) and (A.17) can be be also obtained by differenti-

ating the recursions in (3), therefore avoiding the computation of (A.12)-(A.15). Shifting one

period backward (A.16) and substituting into (A.10) we obtain:

V̇t = −[(a′t ⊗ IN)Żt + (a′t−1|t−1 ⊗ Zt)Ṫt]. (A.18)

Shifting one period backward (A.17) and substituting into (A.11) we obtain

Ḟt = 2NN(ZtPt ⊗ IN)Żt + 2(Zt ⊗ Zt)Nm(TtPt−1|t−1 ⊗ Im)Ṫt + Ḣt + (Zt ⊗ Zt)Q̇t. (A.19)

B Examples

In this section, we look at some examples of time-varying state space models that have been

considered in the literature and show how they can be analyzed with our score driven algorithm.

In particular, in section B.1 we consider the local level model with time-varying volatility, a

model that has been popularized by Stock and Watson (2007) to study inflation dynamics. In

section, B.2 we consider autoregressive processes with time-varying parameters.

B.1 Local level model

Let us consider the local level model with time-varying volatilities:

yt = μt + εt, εt ∼ N (0, σ2
ε,t),

μt = μt−1 + ηt, ηt ∼ N (0, σ2
η,t).

(B.1)

This model has been proposed by Stock and Watson (2007) to model US inflation. The

estimation of (B.1) using the score-driven approach was initially proposed by Creal et al.

(2008, sec. 4.4). Their algorithm, however, contains some inconsistencies and below we show

how it should be modified. First, the state vector and the system matrices are equal to αt = μt,

Zt = Tt = 1, Ht = σ2
ε,t, Qt = σ2

η,t. Thus, the application of the Kalman Filter leads to the
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following recursions:

vt = yt − at, at+1 = at + ktvt,

dt = pt + σ2
ε,t, pt+1 = (1− kt)pt + σ2

η,t+1,

kt = pt/dt, t = 1, ..., n.

(B.2)

Second, the vector of time-varying parameters, which is recursively estimated using the score-

driven filter (4), is equal to ft = (log σε,t, log ση,t)
′. Third, the corresponding Jacobian matrices

are Ḣt =
(
2σ2

ε,t, 0
)
, Q̇t =

(
0, 2σ2

η,t

)
, Żt = Ṫt = (0, 0)′. Finally, the conditional log-likelihood is

equal to �t ∝ −1
2
(log dt + v2t /dt), and the gradient vector and information matrix in (6) are:1

∇t =
1

2d2t
ḋ′t(v

2
t − dt), It = 1

2d2t

[
ḋ′tḋt

]
, (B.3)

where ḋt =
(
2σ2

ε,t, 2σ
2
η,t

)
. The score’s driving mechanism is represented by (v2t − dt), that is the

deviation of the current estimation of the prediction error variance (by means of vt) from its

past estimation (dt). Such term is weighted by ḋt, which determines the different impact on the

two time-varying volatilities.2 A multivariate extension of the score driven model considered

in this section has been used by Buccheri et al. (2018) to model high-frequency multivariate

financial time-series.

B.2 Autoregressive models

Here, we consider models that are perfectly observable. In this case, our algorithm collapses to

the score-driven filter proposed in the literature by Blasques et al. (2014) and Delle Monache

and Petrella (2017).

Let us consider the following autoregressive model with time-varying parameters:

yt = φtyt−1 + ξt, ξt ∼ N (0, σ2
t ). (B.4)

The model can be easily cast in state space form by setting αt = yt, Zt = 1, εt = 0, Ht = 0,

Tt = φt, ηt = ξt and Qt = σ2
t . The vector of interest is ft = (φt, σ

2
t )
′, and the corresponding

Jacobians are Ṫt = (1, 0), Q̇t = (0, 1), Żt = Ḣt = 0. For simplicity we do not impose any

restrictions on ft.
3 Combining the KF (3) with the new filter (6)-(7) leads to the following

1Note that the information matrix is singular. Therefore, it needs to be smoothed to be used as scaling
matrix.

2Note that the resulting algorithm is different from the one derived in Creal et al. (2008). In fact, the two
volatilities are only updated using information in the second moments of the data and the level of the prediction
error, vt, does not enter directly the filter.

3Delle Monache and Petrella (2017) show how to impose stable roots.
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expression for the scaled-score vector:

st = I−1t ∇t =

[
1

y2t−1
(yt−1ξt)

(ξ2t − σ2
t )

]
. (B.5)

The driving process for the coefficient φt is the prediction error scaled by the regressor, while the

volatility σ2
t is driven by the squared prediction error. These match exactly those in Blasques

et al. (2014) and Delle Monache and Petrella (2017).

We can easily extend to the case of vector autoregressive model of order p:

yt = Φ1,tyt−1 + · · ·+ Φp,tyt−p + ct + ξt, ξt ∼ N (0,Γt). (B.6)

The SSF representation can be obtain by setting:

αt = (y′t, . . . , y
′
t−p, 1)

′, Zt = I, Tt =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ1,t . . . Φp,t ct

I
. . .

I

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Qt =

⎡⎢⎢⎢⎢⎢⎣
Γt

0
. . .

0

f

⎤⎥⎥⎥⎥⎥⎦ ,

where ft = (vec(Φt)
′, vec(Γt)

′)′, with Φt = [Φ1,t, . . . ,Φp,t, ct]. We therefore have that Żt =

Ḣt = 0, while Ṫt and Q̇t, are selection matrices. After some algebra, the scaled-score can be

specialized in two sub-vectors driving the coefficients and the volatilities:

st = I−1t ∇t =

[
(X ′

tΓ
−1
t Xt)

−1X ′
tΓ
−1
t ξt

vec(ξtξ
′
t)− vec(Γt)

]
, (B.7)

where Xt = (α′t−1 ⊗ I). Interestingly, the algorithm proposed by Koop and Korobilis (2013)

can be obtained as a special case of ours by imposing some restrictions on the model. First, set

the law of motion (4) c = 0, A = I and let B depend on two scalar parameters (one driving the

coefficients and one the volatility). Second, replace the information matrix for the time-varying

coefficients by its smoothed estimator: Ĩc,t = (1− κ)Ĩc,t−1 + κ(X ′
tΓ
−1
t Xt).

It is well known that VAR models tend to suffer from the ‘curse of dimensionality’ and to

overfit the data (see, e.g., Litterman, 1979; Doan et al., 1986). In the context of fixed coeffi-

cients, Bayesian techniques are used to shrink the parameters, therefore reducing estimation

variance. Our algorithm can easily accommodate shrinkage, as discussed in section 2.3.2 and as

detailed in Appendix C.4. A regularized version of the model proposed by Koop and Korobilis

(2013) can then be easily obtained, where the parameters can be shrunk towards any type of

prior that can be reformulated in the form of stochastic constraint (10). These include the

most popular priors typically considered in the Bayesian VAR literature, including the Min-
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nesota prior, the sum of coefficients prior and the long-run prior (see, e.g., Del Negro, 2012;

Kapetanios et al., 2019).

C Additional results on the score driven algorithm

C.1 State space model in forward form

Let us consider the state space model in the so-called forward form:

yt = Ztαt + εt, εt ∼ N (0, Ht),

αt+1 = Ttαt + ηt, ηt ∼ N (0, Qt), α1 ∼ N (a1, P1), t = 1, ..., n.
(C.1)

The log-likelihood function is the same as in (2), thus ∇t and It are the same as in (6). The

recursions in (3) are replaced by the following ones:

vt = yt − Ztat, Ft = ZtPtZ
′
t +Ht,

Kt = TtPtZ
′
tF
−1
t , Lt = Tt −KtZt,

at+1 = Ttat +Ktvt Pt+1 = TtPtL
′
t +Qt, t = 1, ..., n.

(C.2)

Here we assume the following time dependency in the system matrices: Zt = Z(ft, θm), Ht =

H(ft, θm), but Tt = T (ft+1, θm) and Qt = Q(ft+1, θm). The formulae (A.10)-(A.19) remain

unchanged by simply replacing Tt+1, Ṫt+1, Qt+1, and Q̇t+1 with Tt, Ṫt, Qt, and Q̇t.

C.2 Mixed frequencies and missing observations

Assume to have a data set containing missing observations. The observed vector is represented

by Wtyt, where Wt is an Nt × N selection matrix with 1 ≤ Nt ≤ N , meaning that at least

one observation is available at time t. Note that Wt is obtained by eliminating the i− th row

from IN when the i− th variable is missing. In this setting, at each time t the likelihood �t is

computed using Nt observations; i.e. �t = log p(Wtyt|Yt−1, θ), that is the marginal likelihood.

In practice, the score of the marginal likelihood is computed and the updating of ft is based on

the available information.4 Given this reparameterization, the measurement equation in (1) is

modified as follows:

Wtyt = WtZtαt +Wtεt, Wtεt ∼ N (0,WtHtW
′
t ), (C.3)

and the first four expressions of the KF (3) are modified as follows:

vt = Wt(yt − Ztat), Ft = Wt(ZtPtZ
′
t +Ht)W

′
t ,

at|t = at + PtZ
′
tW

′
tF

−1
t vt, Pt|t = Pt − PtZ

′
tW

′
tF

−1
t WtZtPt.

(C.4)

4A formal discussion of dealing with missing values in score-driven models can be found in Lucas et al.
(2016).
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The expressions in (7) become

V̇t = −[(a′t ⊗Wt)Żt + (a′t−1|t−1 ⊗WtZt)Ṫt],

Ḟt = 2NNt(WtZtPt ⊗Wt)Żt + (WtZt ⊗WtZt)2Nm(TtPt−1|t−1 ⊗ Im)Ṫt

+(Wt ⊗Wt)Ḣt + (WtZt ⊗WtZt)Q̇t.

(C.5)

Mixed frequencies typically involve missing observations and temporal aggregation. The

case of mixed frequencies is of particular interest for a number of applications, like for instance

forecasting low frequency variables using higher frequency predictors (nowcasting). Indeed

low frequency indicators can be modeled as a latent process that is observed at regular low

frequency intervals and missing at higher frequency dates. The relation between the observed

low frequency variable and the corresponding (latent) higher frequency indicator depends on

whether the variable is a flow or a stock and on how the variable is transformed before entering

the model. In all cases, the variable can be rewritten as a weighted average of the unobserved

high frequency indicator (see e.g., Banbura et al., 2013).

C.3 Correlated disturbances

Let consider the case in which the disturbances in (1) are correlated, that is E(ηtε
′
t) = Gt. In

this case the following expressions in (3) need to be modififed:

Ft = ZtPtZ
′
t + ZtGt +G′tZ

′
t +Ht,

at|t = at + (PtZ
′
t +Gt)F

−1
t vt,

Pt|t = Pt − (PtZ
′
t +Gt)F

−1
t (PtZ

′
t +Gt)

′.

(C.6)

Therefore, the expression for Ḟt in (7) need to be modified as follows:

Ḟt = [2NN(ZtPt ⊗ IN) + (G′t ⊗ IN) + (IN ⊗G′t)CNm]Żt

+(Zt ⊗ Zt)2Nm(TtPt−1|t−1 ⊗ Im)Ṫt + Ḣt + (Zt ⊗ Zt)Q̇t

+[(IN ⊗ Zt) + (Zt ⊗ IN)CmN ]Ġt.

(C.7)

C.4 Shrinking the vector of parameters by the L2 penalty

The state space model (1), with the score driven system matrices described by (4) is condi-

tionally Gaussian with conditional likelihood equal to (2). We augment the model using the

following Gaussian constraints:

rt = Rtft + ut ut ∼ N (0,Σt), (C.8)

where rt, Σt and Rt are known and the random disturbance ut is Gaussian and uncorrelated

with the other two disturbances εt and ηt. Since ut is Gaussian, the resulting penalty will be

quadratic with the matrix Σt regulating the degree of shrinkage; e.g for Σt →∞ the constraints
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vanish, while for Σt → 0 the constraints hold exactly. The vector rt can be considered a vector of

artificial observations. The likelihood function for the vector of ‘augmented data’, ỹt = (y′t, r
′
t)
′

is equal to:

�pt = log p(ỹt|Yt−1, θ) ∝ −1

2

(
log |Ft|+ v′tF

−1
t vt

)− 1

2

(
log |Σt|+ u′tΣ

−1
t ut

)
, (C.9)

which can be interpreted as a ‘penalized likelihood’ with a quadratic penalty function. The

resulting ‘penalized’ score is:

spt = (Ip
t )
−1∇p

t = (It +R′tΣ
−1
t Rt)

−1(∇t +R′tΣ
−1
t ut). (C.10)

Using the Woodbury identity we obtain5:

(Ip
t )
−1 = (It+R′tΣ

−1
t Rt)

−1 = (I−1t −I−1t R′t(RtI−1t R′t+Σt)
−1RtI−1t ) = (I −ΥtRt)I−1t , (C.11)

where Υt = I−1t R′t(RtI−1t R′t + Σt)
−1. Finally, we can express the penalized (regularized) score

as follows:

spt = (I −ΥtRt)st +Υtut, (C.12)

From last expression it is straightforward to obtain the two polar cases for Σt → 0 and Σt →∞.

To illustrate with a simple example how such ‘penalized score’ works let us Rt = I, rt = f̄ ,

and Σt = 1
λ
I so that the constraint (10) reduces to ft ∼ N (f̄ , 1

λ
I). This corresponds to a

Ridge-type penalty with λ regulating the degree of penalization. The penalized score will be

spt = (I − Λt)st + Λt(f̄ − ft), where Λt = λ(It + λI)−1. If we assume a simple random-walk

law of motion for ft and information matrix equal to identity matrix, the resulting regularized

score-driven filter is:6

ft+1 =
Bλ

1 + λ
f̄ +

(
I − Bλ

1 + λ

)
ft +

B

1 + λ
st. (C.13)

The law of motion is now mean reverting towards the desired value f̄ . Everything else equal,

the larger is λ, the lower is the weight assigned to actual data and the more binding is the

constraint. Notice that the strategy of stochastic constraints is very flexible, and generalizes a

number of shrinkage methods, including Ridge regressions, Minnesota priors, sum of coefficients

priors as well as the long-run prior in Giannone et al. (2019). Kapetanios et al. (2019) discuss

in details these additional cases.

5In case It is not invertible we use its smoothed estimator Ĩt = (1− κ)Ĩt−1 + κIt which is invertible.
6The same regularized filter can be obtained by setting ft ∼ N (f̄ , 1

λIt), which is the Litterman-type of prior.
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D Monte Carlo exercise

We start from a battery of simple bivariate models that share a common component and study

the performance of our method in tracking time variation of different subsets of parameters. We

simulate two time series (y1,t and y2,t) that load (with parameters λ1,t and λ2,t) on a common

factor μt and are each affected by idiosyncratic noise. The common factor evolves as an AR(1),

with coefficient ρt. In this model, we look at the time variation of a subset of parameters one at

the time. Specifically, DGP1 lets the loading on the common factor vary over time and keeps

all the remaining parameters fixed. In DGP2 we keep both factor loadings constant (λ1,t = 1

and λ2,t = 1) while allowing for time variation in the AR coefficient of the common factor, ρt.

In DGP3 and DGP4 we experiment with time-varying volatility, either in the measurement or

in the transition equations, keeping everything else fixed. In these latter cases, the simulated

model is a univariate signal plus noise model. In all cases, we consider two different sample

sizes, n = 250 and n = 500. As for the laws of motions for the TVPs entering the various

DGPs, we experiment with 6 different possibilities:

Case 1: CONSTANT ft = a1, ∀t;
Case 2: SINE ft = a2 + b2 sin

(
2πt
T/2

)
;

Case 3: SINGLE STEP ft = a3 + b3 (t ≥ τ);

Case 4: DOUBLE STEP ft = a4 + b4I (t ≥ τ1) + c4I (t ≥ τ2);

Case 5: RAMP ft = a5 +
(

b5
T/c5

)
mod (t);

Case 6: AR(1) MODEL ft = a6(1− b6) + b6ft−1 + ξt, ξt ∼ N (0, c6);

where ft = λt in DGP1, ft = ρt in DGP2, ft = σ2
ε,t in DGP3, and ft = σ2

u,t in DGP4.7 We

start with a baseline case in which we keep the parameters constant over time. We then move

to four cases where the parameters change according to a deterministic process. In case 2 the

parameters follow a cyclical pattern determined by a sine function. In cases 3 and 4 we let

the parameters break at discrete points in time, allowing for either one or two breaks. We set

the location of the discrete breaks at given point in the sample. In the case of a single break,

this occurs in the middle of the sample. When we consider two breaks, they are located at 1/3

and 2/3 of the sample. Case 5 (RAMP) is a rather challenging case, whereby the parameters

increase for some time before returning abruptly to their starting levels. Finally, case 6 is

the only one in which we let the parameters vary stochastically, following a persistent AR(1)

model. We consider two cases, one with a near unit root process (i.e. with an AR root of

0.99) and a low variance, one with lower persistence (AR root of 0.97) but substantially higher

variance. We obtain very similar results in these two specifications. The DGPs that we design

7Moreover, ft in the AR(1) model is transformed to be within the unit circle for DGP2, and to be positive
for DGP3 and DGP4.
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are simple, in that time variation is introduced in all the channels in which it can manifest itself,

but only one at the time. By focusing on a single channel at the time, we can better identify the

situations in which our model either succeeds or fails at tracking parameter variation. Further

details on the calibration of the parameters are provided in the next subsections.

The results of the Monte Carlo exercise are shown in Table D.1. The table is organized

in four panels, corresponding to each of the four DGPs. On the left hand side of the table

we show the results for a sample size of n = 250, on the right hand side those obtained when

setting n = 500. For each DGP the analysis is based on 300 simulations. In each panel we

report the results obtained for the six alternative laws of motion described above. We base

our assessment on five different statistics, namely the Root Mean Squared Error (RMSEs),

the Mean Absolute Error (MAE), the correlation between actual and estimated coefficients,

the Coverage (i.e. percentage of times that the actual parameters fall in a given estimated

confidence interval) and the number of cases in which a pile-up occurs (#Pile-up). The last

statistics consists of the number of simulations in which the static coefficients that pre-multiply

the score end up being lower than 10−6, which we take as sufficient evidence that the estimated

parameters are effectively zero, i.e. that the model does not detect any time variation.

We highlight five results. First, for all the DGPs in which the true parameters are constant

the model performs extremely well. This means that the adaptive filter correctly collapses the

parameters to a constant. As a result, RMSEs and MAEs are virtually nil, the actual coverage

extremely precise and a pile-up at zero occurs in about 75 percent of the cases for the volatility

models and more than half of the cases for the loadings and AR coefficients.8 This result implies

that our estimation method does not generate spurious time variation in the coefficients when

this is not present in the data generating process. Second, the pile-up problem is not of primary

concern for our estimator. The number of instances in which our method (incorrectly) concludes

that there is no time variation is basically zero in most cases. Third, for all the DGPs and

across all the specifications for the parameters we obtain extremely good coverage. Coverage

is almost perfect when time variation involves the autoregressive coefficients, somewhat lower

when it affects the volatility of the measurement and of the transition equation, in particular

when parameters break at discrete points in the sample. Fourth, across all DGPs the RAMP

specification is the one that the model finds more challenging to estimate. This specification

generally leads to low correlation between actual and estimated parameters, higher RMSEs

and MAEs and lower coverage. This is not surprising, since our model is, by construction,

designed to detect smooth changes, whereas in the RAMP model periods of small, continuous

changes are suddenly interrupted by large breaks. Fifth, the adaptive filter is very effective in

estimating time-varying loadings and autoregressive coefficients, but it is rather conservative

8For the latter two cases, in an additional 20% of the simulations the estimated parameters are virtually
constant, despite not being classified as a pile-up according to the criterion we have set above.
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in the estimation of the time-varying variances, especially when these are driven by a near unit

root process. For this DGP, in one third of the cases the filter ends in a pile-up when the

sample is relatively small (T=250). However, when time variation is detected, the algorithm

yields relatively low RMSEs and MAEs and a satisfactory coverage. We take these results

as evidence that, in the case of time-varying variances, the algorithm needs relatively more

evidence of breaks in the parameters to move away from zero. A larger sample size (of the

type encountered in financial applications that use high frequency data) basically eliminates

the problem.

D.1 Specification of the DGPs

DGP1 - Time-Varying loadings[
y1,t

y2,t

]
=

[
1

λt

]
μt +

[
ε1,t

ε2,t

]
,

[
ε1,t

ε2,t

]
∼ N (0, I) ,

μt = 0.8μt−1 + ut ut,∼ N (0, 1) .

DGP2 - Time-Varying AR coefficient[
y1,t

y2,t

]
=

[
1

1

]
μt +

[
ε1,t

ε2,t

]
,

[
ε1,t

ε2,t

]
∼ N (0, I),

μt = ρtμt−1 + ut, ut ∼ N (0, 1).

DGP3 - Time-Varying Volatility in the measurement equation

yt = μt + εt, εt ∼ N (0, σ2
ε,t),

μt+1 = 0.8μt + ut, ut ∼ N (0, 1).

DGP4 - Time-Varying Volatility in the transition equation

yt = μt + εt, εt ∼ N (0, 1),

μt+1 = 0.8μt + ut, ut ∼ N (0, σ2
η,t).

D.2 Calibration

DGP1:Time-varying loadings

CONSTANT: a1 = 1;

SINE: a2 = 2, b2 = 1.5;

SINGLE STEP: a3 = 1, b3 = 2, τ = (2/5)n;

DOUBLE STEP: a4 = 1, b4 = c4 = 1.5, τ1 = (1/5)n, τ2 = (3/5)n;

RAMP: a5 = 0.5, b5 = 4, c5 = 2;

AR(1) [b6 = 0.99]: a6 = 1, b6 = 0.99, c6 = 0.082.
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AR(1) [b6 = 0.97]: a6 = 1, b6 = 0.97, c6 = 30.242.

DGP2: Time-varying autoregressive coefficient

CONSTANT: a1 = 0.7;

SINE: a2 = 0, b2 = 0.7;

SINGLE STEP a3 = 0.8, b3 = −0.6, τ = (2/5)n;

DOUBLE STEP:a4 = 0.8, b4 = c4 = −0.5, τ1 = (1/5)n, τ2 = (3/5)n;

RAMP: a5 = 0.3, b5 = −0.9. c5 = 2;

AR(1) [b6 = 0.99]: a6 = 0.2, b6 = 0.99, c6 = 0.082;

AR(1) [b6 = 0.97]: a6 = 0.2, b6 = 0.97, c6 = 0.242;

and in the latter two cases we also impose the restriction that |ρt| < 1.

DGP3 and DGP4: Time-varying volatilities

CONSTANT: a1 = 1;

SINE: a2 = 1, b2 = 0.9;

SINGLE STEP: a3 = 1, b3 = 4, τ = (2/5)n;

DOUBLE STEP:a4 = 1, b4 = c4 = 3, τ1 = (1/5)n, τ2 = (3/5)n;

RAMP: a5 = 0.5, b5 = 8, c5 = 2;

AR(1) [b6 = 0.99]: a6 = 0, b6 = 0.99, c6 = 0.082;

AR(1) [b6 = 0.97]: a6 = 0, b6 = 0.97, c6 = 0.242;

In DGP3 and DGP4, after having simulated the dynamic of the volatility the time-varying

volatilities are rescaled so as to have a fixed ratio between the measurement and transition

error variances equal to 1.

For each DGP we target 300 simulations. However, the actual number of samples changes

depending on the specifications. In the case of constant coefficients, where we would like to see

our estimator to end up in a pile-up situation as often as possible, we perform 300 simulations

and compute all the statistics on these samples. For the remaining specifications, on the other

hand, we keep on drawing artificial samples until we obtain 300 simulations in which the

estimated parameters are different from zero and compute RMSEs, MAEs, correlations and

coverage ratios on these 300 artificial samples. At the same time, we also keep track of the

number of times in which the pile-up problem arises. To better understand how we proceed,

let us take a concrete example, that is the bottom-left panel of Table 1 (DGP4, i.e. the model

with time-varying volatility in the transition equation, n = 250). In the first row we report the

results for the constant coefficient case. As explained, for this case we simulate 300 artificial

samples and estimate the model using our algorithm. It turns out that in 236 out of 300

simulations our estimation method ends up in a pile-up. The RMSEs, MAEs, Correlations and

Coverages, are estimated on all the 300 simulations. Now let us take in the same panel the
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last line, referring to one of the AR(1) specifications. In this case we need to draw up to 314

samples to obtain 300 simulations in which the estimation algorithm does not end being stuck

in a region of the likelihood where the model loading is zero. Now, in this case all the remaining

statistics are computed on the 300 ‘good’ samples. We proceed in this way because we want

to appraise two different issues. The former is the percentage of cases in which the algorithm

ends up in the pile-up even if the true DGP implies time variation. The second is how well

it estimates the parameters conditional on the model correctly detecting time variation. The

two points are of independent interest. If we were to find that the model often ends up in

the pile-up but it is very precise when it does not, one could decide to force the algorithm to

stay away from zero, for instance by using a grid-based estimation method. This is the choice

made, for instance, by Koop and Korobilis (2013). Similarly, in their Monte Carlo Markov

Chain estimation, Stock and Watson (2007) reject draws in which the variances are very close

to zero.

In figures D.1-D.8 we report the simulated true process for the time-varying parameters (red

line), and the fan chart associated to the 5th, 10th, 20th, 30th, 40th, 60th, 70th, 80th, 90th and 95th

quantile of the filtered parameters. In the case of the AR(1) specification we focus on the more

persistent AR(1) DGP and report the difference between actual and estimated parameters.

The figures are based on 300 replications.
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Table D.1: Monte Carlo Exercise

DGP 1: time-varying LOADINGS COEFFICIENT

T = 250 T = 500

RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up

CONSTANT 0.003 0.003 0.678 0.900 165 0.000 0.000 0.680 0.900 180
SINE 0.473 0.380 0.909 0.636 0.852 0 0.386 0.305 0.940 0.648 0.868 0
SINGLE STEP 0.406 0.280 0.927 0.656 0.876 0 0.335 0.229 0.951 0.660 0.882 0
DOUBLE STEP 0.462 0.339 0.936 0.640 0.860 0 0.390 0.277 0.953 0.652 0.874 0
RAMP 0.695 0.461 0.723 0.648 0.856 0 0.575 0.367 0.817 0.658 0.870 0
AR(1) [b6 = 0.99] 0.265 0.213 0.727 0.676 0.892 0 0.274 0.217 0.807 0.676 0.892 0
AR(1) [b6 = 0.97] 0.523 0.415 0.803 0.660 0.872 0 0.527 0.413 0.828 0.662 0.872 0

DGP 2: time-varying AUTOREGRESSIVE COEFFICIENT

T = 250 T = 500

RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up

CONSTANT 0.006 0.006 0.676 0.900 147 0.005 0.004 0.680 0.900 156
SINE 0.330 0.267 0.780 0.684 0.900 0 0.268 0.212 0.866 0.682 0.900 0
SINGLE STEP 0.228 0.166 0.769 0.684 0.900 0 0.203 0.140 0.811 0.686 0.902 0
DOUBLE STEP 0.240 0.185 0.872 0.684 0.900 0 0.209 0.160 0.892 0.686 0.900 0
RAMP 0.341 0.261 0.392 0.682 0.900 0 0.299 0.221 0.548 0.683 0.900 0
AR(1) [b6 = 0.99] 0.297 0.237 0.608 0.684 0.900 4 0.301 0.241 0.695 0.686 0.902 1
AR(1) [b6 = 0.97] 0.477 0.377 0.575 0.686 0.900 0 0.478 0.375 0.593 0.685 0.900 0

DGP 3: TIME-VARYING VOLATILITY - MEASUREMENT EQUATION ERROR

T = 250 T = 500

RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up

CONSTANT 0.000 0.000 0.676 0.896 231 0.000 0.000 0.682 0.899 232
SINE 0.981 0.768 0.747 0.672 0.876 1 0.829 0.637 0.813 0.678 0.882 0
SINGLE STEP 0.808 0.605 0.843 0.618 0.848 0 0.659 0.477 0.883 0.652 0.870 0
DOUBLE STEP 0.702 0.551 0.856 0.628 0.848 0 0.595 0.460 0.889 0.648 0.870 0
RAMP 0.960 0.764 0.498 0.640 0.860 20 0.803 0.599 0.646 0.656 0.874 1
AR(1) [b6 = 0.99] 0.717 0.571 0.568 0.664 0.880 93 0.748 0.578 0.608 0.668 0.886 24
AR(1) [b6 = 0.97] 1.446 0.998 0.600 0.664 0.868 22 1.489 1.005 0.626 0.674 0.878 3

DGP 4: TIME-VARYING VOLATILITY - TRANSITION EQUATION ERROR

T = 250 T = 500

RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up

CONSTANT 0.000 0.000 0.676 0.896 236 0.000 0.000 0.680 0.898 241
SINE 1.052 0.832 0.714 0.672 0.880 1 0.871 0.673 0.794 0.672 0.886 0
SINGLE STEP 0.829 0.614 0.834 0.644 0.864 0 0.680 0.485 0.874 0.656 0.878 0
DOUBLE STEP 0.754 0.592 0.849 0.644 0.868 0 0.620 0.481 0.885 0.656 0.876 0
RAMP 1.015 0.822 0.468 0.644 0.868 1 0.829 0.640 0.615 0.659 0.881 0
AR(1) [b6 = 0.99] 0.768 0.623 0.622 0.668 0.888 95 0.776 0.607 0.613 0.668 0.887 34
AR(1) [b6 = 0.97] 1.533 1.069 0.590 0.664 0.876 14 1.523 1.042 0.619 0.664 0.880 5

Note. The results shown in the first and in the second panel (DGP1 and DGP2) refer to a bivariate factor

model in which two variables are driven by a single common factor that evolves as an autoregressive process

of order 1. In the first case (DGP1) the loading of the second variable on the common factor varies over time

and all the other parameters are kept constant. In the second case (DGP2) the autoregressive component

of the common factor varies over time and all the other parameters are kept constant. The results shown

in the third and in the fourth panel (DGP3 and DGP4) refer to ARMA(1,1) models that are cast in state

space and feature time-varying variances of the random disturbance in, respectively, the measurement and

the transition equation. The abbreviations Corr. and Cov. stand, respectively for Correlation and Coverage,

while # Pile-up denotes the number of simulations in which the algorithm delivers constant parameters.

The different laws of motion of the parameters in the first column (Constant, Sine, Single Step, Double Step,

Ramp and AR(1) are described in Section 4).
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Figure D.1: time-varying loadings, n=250
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Figure D.2: time-varying loadings, n=500
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Figure D.3: time-varying autoregressive coefficients, n=250
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Figure D.4: time-varying autoregressive coefficients, n=500
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Figure D.5: time-varying measurement equation error variance, n=250
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Figure D.6: time-varying measurement equation error variance, n=500
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Figure D.7: time-varying transition equation error variance, n=250
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Figure D.8: time-varying transition equation error variance, n=500
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E Additional details on the Empirical Application

To simplify the notation, in this section any generic score driven time-varying parameter, xt|t−1,

is simply denoted with xt.

E.1 State state representation and Jacobians of the system matrices

State Space representation. The state space representation of the model is:

yt = Ztαt + εt, εt ∼ N (0, H),

αt = Tαt−1 + ηt, ηt ∼ N (0, Qt),

where

yt =

[
Δdt

pdt

]
, Zt =

[
ḡt 0 0 1 1 0 0

pdt
1

1−ρtφg
− 1

1−ρtφμ
0 0 0 0

]
, H =

[
0 0

0 σ2
ν

]
,

αt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

g̃t,

μ̃t,

g̃t−1
εd,t

εg,t

εμ,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0 φg 0 0 0 0 0

0 0 φμ 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ηt = Sη

⎡⎢⎢⎣
εd,t

εg,t

εμ,t

⎤⎥⎥⎦ , Sη =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 1 0

0 0 1

0 0 0

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus, we have that Qt = SηΩtS
′
η, Ωt = DtRtDt, where Dt = diag[σd,t, σg,t, σμ,t] contains

the standard deviations, and Rt denotes the correlation matrix. Not all the parameters of the

correlation matrix can be identified (see Section 4.3.1 and Appendix E.2 for additional details).

The zero correlation between the measurement error in dividend growth (εd,t) and the stochastic

disturbance in expected dividend growth (εg,t), which is required for the identification of the

model, is appropriately imposed and the resulting correlations matrix is:

Rt =

⎡⎢⎢⎣
1 0 �dμ,t

0 1 �gμ,t

�dμ,t �gμ,t 1

⎤⎥⎥⎦ .
Recall that to have positive variances we model the log standard deviations σi, and for a well

defined correlation matrix we model a transformation of the partial correlations πij. For more

details on the function mapping the correlations into the partial correlations see section E.3.

Therefore, the system matrices Zt and Qt are function of the vector of time-varying parameters

ft = (ϕ′t, δ
′
t, γ

′
t)
′, where ϕt = (μt, gt)

′, δt = (log σd,t, log σg,t, log σμ,t)
′, γt = (πdμ,t, πgμ,t)

′. The
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vector ft follows the score driven model discussed in section 2, with the following specification

of the static parameters: c = (0, 0, cδ1 , cδ2 , cδ3 , cγ1 , cγ2)
′, A = diag[1, 1, aδ1 , aδ2 , aδ3 , aγ1 , aγ2 ], B =

diag[κμ, κg, κδ1 , κδ2 , κδ3 , κγ1 , κγ2 ]. In the remainder of this section we discuss the parametrization

of the time-varying system matrices and the associated Jacobians that are required by the score

driven algorithm introduced in section 2.

Time variation in the Z matrix. Using the notation in section 2.2 we have that

vec(Zt|t−1) = S0,z + S1,zψz

(
S2,zft|t−1

)
where

S0,z =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

06×1
1

0

1

05×1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, S1,z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 1

08×4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, S ′2,z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

0 0

0 0

0 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ψz (ϕt) =

⎡⎢⎢⎢⎢⎣
gt

pdt
1

1−ρtφg

− 1
1−ρtφμ

⎤⎥⎥⎥⎥⎦ , pdt = gt − log(expμt − exp gt), ρt =
exp pdt

1 + exp pdt
.

Finally, we have the following Jacobian:

Żt = S1,zΨz,tS2,z, Ψz,t =

⎡⎢⎢⎢⎢⎢⎣
0 1

∂pdt
∂μt

∂pdt
∂gt

φg

(1−φgρt)2
∂ρt
∂μt

φg

(1−φgρt)2
∂ρt
∂gt

− φμ

(1−φμρt)2
∂ρt
∂μt

− φμ

(1−φμρt)2
∂ρt
∂gt

⎤⎥⎥⎥⎥⎥⎦ ,
∂pdt
∂μt

= − expμt

expμt−exp gt
,

∂pdt
∂gt

= −∂pdt
∂μt

,
∂ρt
∂μt

= −ρt(1−ρt) expμt

expμt−exp gt
,

∂ρt
∂gt

= − ∂ρt
∂μt
.

Time variation in the volatility and correlations. Recall that the covariance matrix of

the transition equation is Qt = SηΩtS
′
η where Ωt = DtRtDt. Using the notation in Section 2.2,

and the standard rules of matrix differentiation, we have that:

Q̇t = (Sη ⊗ Sη)Ω̇t

= (Sη ⊗ Sη)

[
∂vec(Ωt)

∂vec(Dt)′
Ḋt +

∂vec(Ωt)

∂vec(Rt)′
Ṙt

]
= (Sη ⊗ Sη)

[
(DtRt ⊗ I + I ⊗DtRt)Ḋt + (Dt ⊗Dt)Ṙt

]
.
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We now express the matrices of volatilities and correlations as follows:

vec(Dt) = S1,dψd (S2,dft) , vec(Rt) = S0,r + S1,rψr (S2,rft) ,

where S1,d S2,d, S1,r, S2,r are selection matrices

S1,d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, S ′2,d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, S0,r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

1

0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, S1,r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

1 0

0 0

0 0

0 1

1 0

0 1

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, S ′2,r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 0

0 0

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The functions ψd(δt) and ψr(γt) and their Jacobians are described in section E.3. Specifically,

we have that:

Ḋt = S1,dΨd,tS2,d, Ṙt = S1,rΨr,tS2,r,

where

Ψd,t = Dt, Ψr,t =
√

1− π2
dμ,t

⎡⎣√1− π2
dμ,t 0

−πdμ,tπgμ,t 1− π2
gμ,t

⎤⎦ .
E.2 Model Identification

In this section, we consider the identification of the model. Let us start by looking at the

constant parameter version of the model:

pdt+1 = pd− b1μ̃t+1 + b2g̃t+1 + νt+1, νt+1 ∼ N (0, σ2
ν),

Δdt+1 = g + g̃t + εd,t+1,

μ̃t+1 = φμμ̃t + εμ,t+1,

g̃t+1 = φgg̃t + εg,t+1.

(E.1)

The measurement error νt is uncorrelated with the innovations of the model for which we

assume a general a covariance structure, εt = (εd,t, εμ,t, εg,t)
′ ∼ N (0,Ω). Below we discuss the

restrictions needed for this model to be identified.

Model (E.1) is equivalent to one estimated by Binsbergen and Koijen (2010), whose identi-

fication issue is discussed at lenght in Cochrane (2008a), with the key difference being that we

have added the measurement error in the pdt equation. To be more precise, the specification

for Δdt+1 implies an ARMA(1,1) process, while the model for pdt without the measurement
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error νt is an ARMA(2,1). The resulting bivariate model is a restricted VARMA(2,1) with five

parameters9 to identify the covariance Ω. Specifically, we set one zero correlation as in Binsber-

gen and Koijen (2010) and Rytchkov (2012), i.e. Corr(εd,t, εg,t) = 0. Adding the measurement

error νt in the pdt equation, the additional parameter σ2
ν is identified by the additional moving

average coefficients.10 By introducing time-varying long-run mean pdt, and gt, the implied

reduced form models for pdt and Δdt become ARIMA(2,1,3) and ARIMA(1,1,2), respectively.

Thus, the two additional moving average coefficients are used to identify the two parameters,

bμ and bg, scaling the score-driven filters for μt and gt in (25)-(26). Since our model features a

time-varying Ωt, at each point in time for a given covariance matrix Ω the model is identified;

i.e. the model is locally identified.

E.3 Modelling the correlation matrix via partial correlations

Here we show how to model a time-varying correlation matrix by imposing bounds on the

partial correlations. In order to save in notation we drop the subscript t. Let consider the

following covariance matrix Ω = DRD′, where D = diag(σ1, σ2, σ3) and R is the correlation

matrix:

R =

⎡⎢⎢⎣
1 �12 �13

�12 1 �23

�13 �23 1

⎤⎥⎥⎦ .
To ensure positive standard deviations we model δi = log σi so that σi = exp δi. For the

correlations we model γ = (γ12, γ13, γ23)
′, where γij = h(�ij) and h(·) is the inverse function of

the transformation �ij = ψr(γij) that we describe below.

A well defined correlation matrix R must be positive semidefinite with ones on the main

diagonal. This poses a non-trivial problem; see e.g. Budden et al. (2008).

On the other hand, the one-to-one mapping between the correlations and the partial cor-

relations allows us to impose simple constraints to the partial correlations. Inspired by Joe

(2006), Daniels and Pourahmadi (2009) and Lewandowski et al. (2009), we re-parametrize the

correlation matrix with respect to the partial correlation matrix. Specifically, R is positive

semidefinite if the corresponding partial correlation matrix

Π =

⎡⎢⎢⎣
1 π12 π13

π12 1 π23

π13 π23 1

⎤⎥⎥⎦
has all the elements πij ∈ (−1, 1), where πij are the partial correlations between variables i

9The tree autoregressive coefficients and the two constants are identified by construction. The two moving
average coefficients and three parameters of the covariance matrix are used to identify the six elements of the
matrix Ω.

10Adding the measurement error νt, the reduced form model for pdt becomes an ARMA(2,2).
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and j. To satisfy those bounds on πij we use the Fisher transformation, i.e. πij = tanh(γij).

The function mapping the elements of R into the elements of Π is:11

�12 = π12, �13 = π13, �23 = π23

√
(1− π2

12)(1− π2
13) + π12π13. (E.2)

In practice, we perform two transformations:

�ij = ψr(γij) = ψr,2(ψr,1(γij)), (E.3)

where ψr,1(·) = tanh(·), ψr,2(·) is defined in (E.2), and γij = atanhπij. The resulting Jacobian

is:

∂�

∂γ′
=

∂�

∂π′
∂π

∂γ′
=

⎡⎢⎢⎣
1 0 0

0 1 0

κ12 κ13 κ23

⎤⎥⎥⎦
⎡⎢⎢⎣

1− π2
12 0 0

0 1− π2
13 0

0 0 1− π2
23

⎤⎥⎥⎦ ,
where

κ12 = π13 − π12π23

√
1− π2

13

1− π2
12

, κ13 = π12 − π13π23

√
1− π2

12

1− π2
13

, κ23 =
√

(1− π2
12)(1− π2

13).

Remark: It can be shown that if the partial correlations πij are bounded using the cosine

function, i.e. ψr,1(·) = cos γij, the transformation (E.3) turns out to be the same as the

hyperspherical coordinates used in, e.g., Creal et al. (2011) and Buccheri et al. (2018). This

means that by using hyperspherical coordinates they are implicitly modelling acosπij. The

proof for a correlation matrix of general dimension is beyond the scope of this paper.

In our application, the identification of the model requires to set to zero one of the corre-

lations. Without loss of generality we set to zero the correlation between the first and second

innovation. Eploiting the mapping between the correlations and partial correlations we have

that π12 = 0 implies �12 = 0. Therefore, we model the following vectors � = (�13, �23)
′,

π = (π13, π23)
′, γ = (γ13, γ23)

′ The mapping between correlations and partial correlation is

�13 = π13, �23 = π23
√

1− π2
13, and the Jacobian is

∂�

∂γ′
=

√
1− π2

13

[√
1− π2

13 0

−π13π23 1− π2
23

]
.

11See also Yule and Kendall (1965, ch. 12) and Anderson (1984, p. 41).
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E.4 Additional derivations of model objects

E.4.1 On the Conditional Variance and correlation of returns

In this section, we give additional details on the conditional variance and correlation of returns

implied by the baseline model. Recall that:

rt+1 − Et(rt+1) = εrt+1

εrt+1 = −ρt+1b1,t+1ε
μ
t+1 + ρt+1b2,t+1ε

g
t+1 + εdt+1.

Therefore, one can calculate the conditional variance of returns:

Vart
(
εrt+1

)
= (ρt+1b1,t+1)

2
Vart

(
εμt+1

)
+ (ρt+1b2,t+1)

2
Vart

(
εgt+1

)
+ Vart

(
εdt+1

)
+

−2 (ρt+1)
2 b1,t+1b2,t+1Covt

(
εgt+1, ε

μ
t+1

)− 2ρt+1b1,t+1Covt
(
εμt+1, ε

d
t+1

)
= (ρt+1b1,t+1)

2 (σμ
t+1

)2
+ (ρt+1b2,t+1)

2 (σg
t+1

)2
+

(
σd
t+1

)2
−2 (ρt+1)

2 b1,t+1b2,t+1

(
�gμt+1σ

μ
t+1σ

g
t+1

)− 2ρt+1b1,t+1

(
�dμt+1σ

μ
t+1σ

d
t+1

)
.

The conditional covariance can also be computed as follows:

Covt
(
εμt+1, ε

r
t+1

)
= −ρt+1b1,t+1Vart

(
εμt+1

)
+ ρt+1b2,t+1Covt

(
εgt+1, ε

μ
t+1

)
+ Covt

(
εμt+1, ε

d
t+1

)
= −ρt+1b1,t+1

(
σμ
t+1

)2
+ ρt+1b2,t+1

(
�gμt+1σ

μ
t+1σ

g
t+1

)
+
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E.4.2 On the Conditional Variance of price dividend

Note that

pdt+1 − pdt+1 � −b1,t+1μ̃t+1 + b2,t+1g̃t+1

= −b1,t+1φ1μ̃t + b2,t+1γ1g̃t − b1,t+1ε
μ
t+1 + b2,t+1ε

g
t+1,

and that

Δdt+1 − Et(Δdt+1) = εdt+1

rt+1 − Et(rt+1) = εrt+1

where

εpdt+1 = −b1,t+1ε
μ
t+1 + b2,t+1ε

g
t+1

εrt+1 = −ρt+1b1,t+1ε
μ
t+1 + ρt+1b2,t+1ε

g
t+1 + εdt+1.

It follows that

Vart
(
pdt+1 − pdt+1

)
= b21,t+1Vart(ε

μ
t+1) + b22,t+1Vart

(
εgt+1

)− 2b1,t+1b2,t+1Covt(ε
μ
t+1, ε

g
t+1).
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E.4.3 Term structure of Expectations and Risk

In this subsection we discuss the derivation of the term structure of expectations and risk for

both dividend growth and returns. We define here long-horizon returns and dividend growth as

the simple sum of annual log returns and dividend growth. By applying recursively equations

(18)-(20) in the main text and taking conditional expectations, we obtain explicit expressions

for the model-implied n-year return and dividend growth

μ
(n)
t =

1

n
Et

[
n∑

j=1

rt+j

]
= μt +

1

n

1− φn
μ

1− φμ

μ̃t (E.4)

g
(n)
t =

1

n
Et

[
n∑

j=1

Δdt+j

]
= gt +

1

n

1− φn
g

1− φg

g̃t. (E.5)

The model can be used also to obtain the annualized conditional variance of a n-years

return. Ideally, when computing the uncertainty associated to multi-step forecasts, one should

also account for the fact that the steady state parameters, μ̄t and ḡt, drift going forward

from date t. But this is computationally challenging because it requires integrating a high-

dimensional predictive density across all possible paths of future parameters. Consistent with a

long-standing tradition in the learning literature (referred to as ‘anticipated-utility’ by Kreps,

1998), we instead assume that the steady state return and dividend growth are assumed to

be constant going forward in time.12 Therefore we can compute the term structure of risk in

returns as

1

n
Vart

[
n∑

j=1

rt+j

∣∣∣μt+j = μt

]
=

1

n
Vart

[
n−1∑
j=1

1− φn−j
μ

1− φμ

εμt+j +
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j=1

εrt+j

]

=
1

n

n−1∑
j=1

(
1− φn−j

μ

1− φμ

)2

Vart
(
εμt+j

)
+

1

n

n∑
j=1

Vart
(
εrt+j

)
+
2

n

n−1∑
j=1

(
1− φn−j

μ

1− φμ

)
Covt

(
εμt+j, ε

r
t+j

)
where the conditional variance and covariance of returns are defined in E.4.1. Similarly, for

dividend growth

1

n
Vart

[
n∑

j=1

Δdt+j

∣∣∣gt+j = gt

]
=

1

n

n−1∑
j=1

(
1− φn−j

g

1− φg

)2

Vart
(
εgt+j

)
+

1

n

n∑
j=1

Vart
(
εdt+j

)
given that Covt

(
εgt+j, ε

d
t+j

)
= 0.

To compute the term structure of risk, we need to compute multiple step-ahead conditional

12This is consistent with the assumption that the long-run components move slowly overtime, therefore any
variation of them is likely to be dominated by the variability of the other components of the model.
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variances and covariances. We follow Creal et al. (2011) and for given parameter estimates

at time t we simulate 1000 sample paths for the variables of the model, and use those to

update the variances and correlations of the model. The h-step ahead conditional variances

and covariances are therefore computed as the average over those simulations.

E.5 Time-varying risk: detailed results

The left hand side panel of Figure E.1 shows the evolution the conditional volatility of returns.

This is very persistent and slightly trending upwards over the whole sample. Both the time

profile and the average on the whole sample (at around 18 percent) are remarkably close to the

estimates obtained by Carvalho et al. (2018). The right hand side panel shows the conditional

correlation between expected and actual returns, that is the correlation between rt+1−Et(rt+1)

and μ̃t.
13. The first point to notice is that it is robustly negative over the whole sample.

This speaks directly to the notion that actual returns are predictable due to mean reversion:

surprisingly high returns today correspond to low future returns. This correlation falls in our

sample, from -.60 to -0.75, indicating increasing predictability in the last two decades, and

generally falls in recessions, in line with the procyclical behaviour of the slope of the term

structure of returns.

Mean reversion in returns is an important element in shaping investment strategies of long-

run investors. The conventional view holds that the longer the investment horizon, the higher

should the share of stocks in investment portfolios be. The reason is that the variance of stock

returns at long horizons on a per year basis is lower than that at short-horizons, a result that

would hold both unconditionally (Siegel, 2008), as well as conditionally on a given information

set (Campbell and Viceira, 2005). Mean reversion plays a large role in rationalizing this result:

if bear and bull markets roughly cancel out over long time spans, investors with a longer time

horizon hold relatively less risk.14

Given time-varying covariances, our model produces time-varying profiles for the variance

13See Appendix E.4.3 for details on how this is computed
14Pastor and Stambaugh (2012) challenge this view and argue that if one takes into account others sources

of uncertainty (in particular estimation risk and uncertainty about future expected returns) long-run variance
is actually thirty percent higher than short-term variance. Recent support for the conventional wisdom comes
from the work of Carvalho et al. (2018): when investors hold reasonable priors on the model parameters, the
estimated conditional variance of stock returns falls with the investment horizon.
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of stock returns at different horizons:15

1

n
Vart

[
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∣∣∣μt+j|t = μt+1|t

]
=

1

n
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iid uncertainty

+
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n
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(
1− φn−j
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Vart
(
εμt+j
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future expected return uncertainty

+
2

n

n−1∑
j=1

(
1− φn−j

μ

1− φμ

)
Covt

(
εμt+j, ε

r
t+j

)
︸ ︷︷ ︸

mean reversion

The left panel of Figure E.2 shows how the conditional variance for investment horizons of 5,

10 and 15 years ahead has evolved relative to the variance at the one year horizon. Three main

points emerge. First, throughout the sample the conditional variance of the long run investor

falls with the investment horizon. In fact, 5 to 15 years out the (per year) variance of stock

returns is between 80 to 60 percent that of one year ahead, confirming the results in Campbell

and Viceira (2002, 2005) and Carvalho et al. (2018). Secondly, reading this in conjunction with

the right hand side panel of Figure E.1 shows that the evolution over time of the term structure

mirrors closely that of return predictability: rising mean reversion is important in periods of

high volatility (e.g. the depressions up to WW2, as well as the last 2 decades) and pushes

down long horizon variance. Finally, the right hand side panel of Figure E.2 decomposes the

(sample average) term structure of risk in its three components: the variance of innovations

to expected returns (red solid line), the variance of innovations to actual returns (blue dotted

line) and the mean reversion component (greed dashed line). The increase in predictability over

long horizons dominates the other terms and gives rise to a downward sloping term structure

of returns risk.

15Two caveats ought to be stressed. First, we are abstracting from estimation risk. This is therefore a source
of downward bias in our estimates. Second, we we are disregarding associated with the movement in the trend.
This could also bias downward our estimate of the conditional variance, although given the very low signal to
noise ratio of stock returns, the adjustment is likely to be negligible.
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Figure E.1: Conditional Volatilities and Correlations of returns
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Note. The left hand panel of Figure E.1 reports the conditional volatility of returns Vart
(
εrt+1

)
,

whereas the left hand side reports the conditional correlation between expected returns and actual
returns, Corrt

(
εμt+1, ε

r
t+1

)
.

Figure E.2: Term Structure of the Returns Conditional Variance
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Note. The left panel of Figure E.2 reports the conditional variance of long run returns at different
horizons with respect to the variance of the one year returns. On the right panel of Figure E.2 we
report the average over the entire sample of the decomposition of the term structure of variance into
the component associated to the returns shocks, the component of the variance that is associated
with the expected returns and the mean reversion component. The black line corresponds to the
average term structure of risk and is equal to the sum of the aforementioned three components.
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E.6 Additional Results

Figure E.3: Volatilities and Correlations
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Note. Figure E.3 shows the estimated volatilities and correlations that form the matrix Qt.
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Figure E.4: Term Structure of the Expected Returns and Dividend Growth

Note. Figure E.4 plots the term structure of expected return and dividend growth. Appendix
E.4.3 gives details on the derivation of the term structure of expectations.
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Figure E.5: Expected Returns and Dividend Growth: Selected Episodes
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Note. Figure E.5 plots the term structure of expected return (left panel) and dividend growth (right
panel) around some specific events. In particular, the upper panel looks at the Great Depression,
the middle panel looks at the years around the 2001 recession and the bottom panel looks at the
years of the Great Recession.
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Figure E.6: Term Structure of the Returns Risk
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Note. The upper panel of Figure E.6 reports the term structure of the volatility of returns. In the
lower panel the same term structure is normalized to 1 for the 1 year head investment. Appendix
E.4.3 gives details on the derivation of the term structure of volatility.
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Figure E.7: Term Structure of the Dividend Growth Risk
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Note. Figure E.7 reports the term structure of the volatility of dividend growth. Appendix E.4.3
gives details on the derivation of the term structure of volatility.

Figure E.8: Steady State Comparisons
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Note. The left panel of Figure E.8 reports two alternative measures of the long-run riskless real rate
that we recover from the estimates in section 6. Specifically, μt|t−1 − μex

t|t−1 and gt|t−1 − gext|t−1.

The estimates of pdt|t−1 from the two models are reported in the panel on the right together with
the (log) level of the price dividend ratio.
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Table E.1: Excess Return Model: Estimation Results

φμ 0.863 bμ 0.081
[0.007] [0.010]

φg 0.355 bg 0.053
[0.011] [0.007]

σ̄d 0.062 aσd
0.858 bσd

0.016
[0.061; 0.065] [0.023] [0.001]

σ̄g 0.097 aσg 0.765 bσg 0.012
[0.096; 0.104] [0.052] [0.003]

σ̄μ 0.019 aσμ 0.847 bσμ 0.015
[0.018; 0.024] [0.051] [0.003]

ρ̄d,μ 0.888 aπd,μ
0.980 bπd,μ

0.025
[0.660; 0.892] [0.010] [0.010]

ρ̄g,μ -0.001 aπg,μ 0.820 bπg,μ 0.025
[-0.026; -0.018] [0.047] [0.005]

σ2
ν 0.008 κh 0.020

[0.0002] [0.0001]

Log Lik. 322.232

Note. Table E.1 reports parameter estimates for our baseline model. In the first two entries of the first

column we report the estimates of the autoregressive coefficients of expected returns and expected

dividend growth (φμ and φg). Then we show the average (over the whole sample) estimates of the

volatilities (σ̄d, σ̄g and σ̄μ) and correlations (ρ̄d,μ and ρ̄g,μ) that form the matrix Qt in the state space

model. Finally, we report the estimated volatility of the measurement error for the price dividend

ratio. The second and third columns show the estimates of the coefficients that enter the law of motion

of the score driven time-varying processes: ft+1 = c+Aft+Bst where A and B are diagonal matrices.

Recall that the first two elements of ft are martingales. This implies that the first two elements of the

diagonal of A are zeros. Estimates for the remaining five entries are reported in the second column of

this table. In the third column we report the seven elements that form the diagonal of B, that is the

loadings on the likelihood score, and the smoothing coefficient applied to the Hessian term (κh). For

each coefficient we report in square brackets the associated standard error. For the average volatilities

and correlations in the first column we report the 68% confidence interval from 1000 simulations of

the model (calculated as in Blasques et al., 2016).
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