

Financial Integration in a Changing World Rong Fu

Department of Economics, Heriot-Watt University rf19@hw.ac.uk

1. Introduction

- Accurately measure financial integration is important as
- -Financial integration leads to greater investment, more efficient capital allocation and consumption smoothing.
- Financial integration increases spillovers and contagion risk.
- Increasing financial integration tends to undermine domestic policies effectiveness (Blanchard et al., 2010)

- This paper measures financial integration as the fraction of a country's stock return explained by global factors. (see e.g. Eiling and Gerard (2014))
- We incorporate time-variation in factor exposures and in volatility within this framework to construct financial integration and aim to answer:
- Do time-varying coefficients and stochastic volatility matter when modelling financial integration?
- -Has integration increased over time due to the surge of capital flows or other economic changes?
- -What drives and predicts the dynamics of financial integration?

2. Methods

We start with the following model with $r_{i,t}$ as the excess return for country *i* at period *t*:

Figure 2: Financial Integration Derived from Constant Factor Loading and Risk

4. What Drives Financial Integration?

4.1 Decomposing the Integration Measure

According to Eq.(1), rising financial integration can be caused by

- increasing risk due to the global factor (Global Risk)
- decreasing risk due to the country effect (Country Risk)
- decreasing risk due to the estimation error (Estimation Risk).

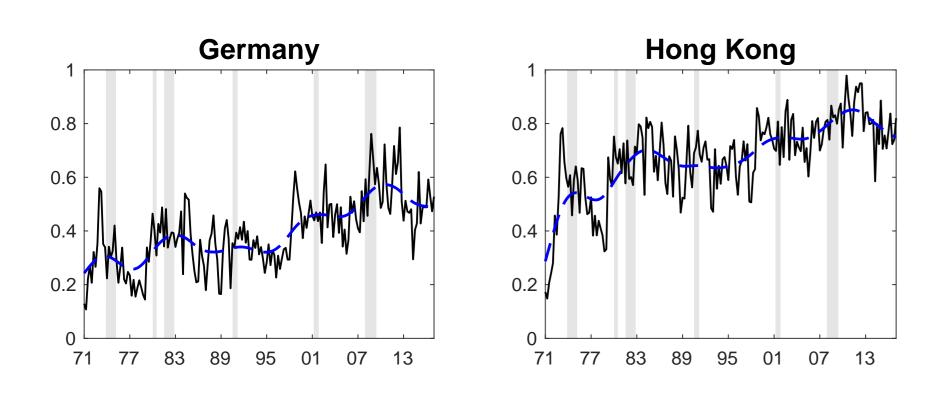
	Global Risk	Country Risk					
	Trend	Trend	Trend				
Australia	7.81%*	-0.43%	-2.99%***				
Austria	4.59%***	-0.13%	0.63%				
Belgium	0.68%**	-0.04%	0.09%				
Canada	5.20%**	-0.55%	0.25%				
Denmark	2.48%	2.28%	1.42%				
France	8.45%	2.82%*	0.16%				
Germany	5.77%**	-0.44%	-1.99%				
Hong Kong	27.60%***	8.32%*	-1.35%				
Italy	7.91%**	0.76%***	-2.13%				
Japan	0.44%	0.31%***	0.79%				
Netherlands	4.79%**	-0.20%	-0.87%***				
Norway	9.38%*	0.95%***	-1.87%				
Singapore	11.73%***	0.40%***	-2.96%*				
	18.82%**	1.08%***	-2.93%***				
Sweden	4.13%*	0.42%***	-0.22%				
Switzerland	5.31%	0.52%***	-1.26%*				
UK	4.80%	0.55%***	0.23%				
US	6.19%*	0.59%***	-0.68%				
Table 1: Perron and Yabu (2009a) Trend Tests for the Com-							

- FDI - - Growth ···· NBER · - · Trade - - VIX

Figure 3: *Time-Varying Inclusion Probabilities for Different Predictors*

	DMA with VIX		DMA without VIX		
	RMSFE	riangle log(PL)	RMSFE	riangle log(PL)	
Australia	0.41***	28.72	0.44***	25.02	
Austria	0.97	0.00	0.98	-0.04	
Belgium	0.99*	-0.52	0.99*	-0.52	
Canada	0.56***	21.45	0.67***	13.40	
Denmark	0.80**	8.30	0.88*	5.11	
France	0.63***	9.81	0.69*	5.61	
Germany	0.38***	34.85	0.51***	24.64	
Hong Kong	0.89***	2.27	0.89***	2.28	
Italy	0.37***	37.50	0.49***	25.88	
Japan	0.59**	22.02	0.79*	12.28	
Netherlands	0.52***	27.51	0.62***	20.02	
Norway	0.53***	18.00	0.68***	10.85	
Singapore	0.67***	9.11	0.78***	5.98	
Spain	0.68***	12.36	0.74***	10.48	
Sweden	0.46***	29.30	0.49***	28.92	
Switzerland	0.66***	9.69	0.74***	7.25	
United Kingdom	0.79***	10.24	0.82***	8.06	
United States	0.70***	12.19	0.80***	7.29	

$r_{i,t} = \mu_{i,t} + \beta_{i,t}^p r_t^p + \varepsilon_t \sqrt{exp(\ln h_{i,t})}$ $i = 1, \dots, N, \quad t = 1, \dots, T, \quad \varepsilon_t \sim N(0, 1)$


• $\mu_{i,t}$ is the unobserved country-specific factor

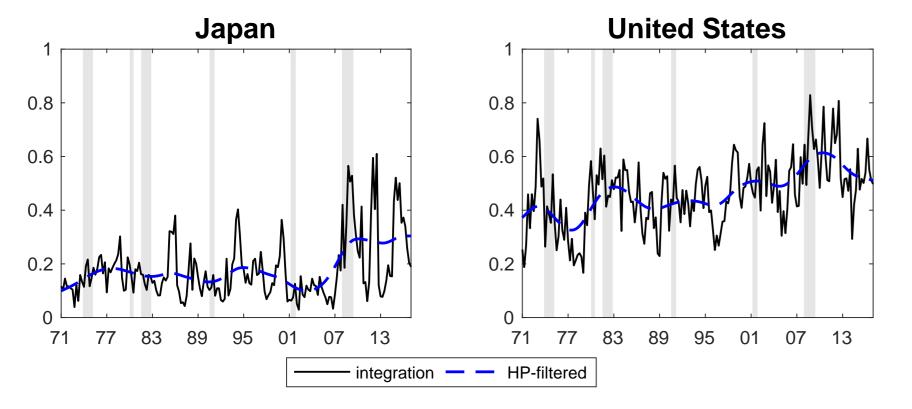
- r_t^p are the two out-of-sample principal components we obtained, which can be treated as the excess return of the world equity portfolio (Pukthuanthong and Roll, 2009).
- Factor exposures on different global factors for each country $\beta_{i,t}^p$ and the idiosyncratic variance $h_{i,t}$ are **time-varying**.

Financial integration is calculated as:

$$TVI_{i,t} = \frac{V_t(\beta_{i,t}^p r_t^p)}{V_t(r_{i,t})} = \frac{V_t(\beta_{i,t}^p r_t^p)}{V_t(\mu_{i,t} + \beta_{i,t}^p r_t^p) + h_{i,t}}$$
(1)

3. Time-varying Financial Integration

ponents of Financial Integration. ***, ** and * denote significance at the 1%, 5% and 10% levels.


4.2 Determinants of Financial Integration

- International Trade
- Investment Openness
- Growth in Real per Capital GDP
- NBER recession dummy

 VIX, the Chicago Board Options Exchange (CBOE) Volatility Index, which is viewed as a measure of risk aversion and fear in financial markets (Rey, 2015) **Table 3:** Forecast evaluation for financial integration using different predictors compared to driftless Random Walk (RW). Forecast measures include the Relative Mean Squared Forecast Error (RMSFE), *p* values for Clark and West test.

5. Conclusions

- Time-varying factor loadings and stochastic volatility matter within an international CAPM model to construct financial integration.
- By decomposing financial integration into global risk, local risk and estimation risk, we argue that greater integration is mainly driven by the greater importance of global factors, not diminishing local effects.
- Financial integration is highly predictable, which is important for international diversification, risk management and policy making.
- We identify the CBOE volatility index (VIX) as a strong predictor of financial integration. This reflects the vulnerability of financial markets to uncertainty.

Figure 1: Financial Integration Derived from Time-varying Factor Loadings and Risk.

Following Koop and Korobilis (2012), we predict financial integration using dynamic model averaging (**DMA**), to deal with the problem of parameter and model uncertainty.

	VIX	FDI	Growth	NBER	Trade	
G7	0.41	0.04	0.17	0.06	0.42	
Overall	0.38	0.03	0.12	0.08	0.32	
Table 2: Average Inclusion Probabilities for Differ-						
ent Predicto	rs					

6. References

Blanchard, Olivier, Giovanni DellAriccia, and Paolo Mauro. "*Rethinking macroeconomic policy*." Journal of Money, Credit and Banking 42.s1 (2010): 199-215.

Eiling, Esther, and Bruno Gerard. "*Emerging equity market comovements: trends and macroeconomic fundamentals*." Review of Finance 19.4 (2014): 1543-1585.

Koop, Gary, and Dimitris Korobilis. "Forecasting inflation using dynamic model averaging." International Economic Review 53.3 (2012): 867-886.

Perron, Pierre, and Tomoyoshi Yabu. "*Testing for shifts in trend with an integrated or stationary noise component.*" Journal of Business Economic Statistics 27.3 (2009): 369-396.

Pukthuanthong, Kuntara, and Richard Roll. "*Global market integration: An alternative measure and its application.*" Journal of Financial Economics 94.2 (2009): 214-232.

Rey, Hélène. *Dilemma not trilemma: the global financial cycle and monetary policy independence*. No. w21162. National Bureau of Economic Research, 2015.